OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15580–15588

Folding flexible co-extruded all-polymer multilayer distributed feedback films to control lasing

James H. Andrews, Michael Crescimanno, Nathan J. Dawson, Guilin Mao, Joshua B. Petrus, Kenneth D. Singer, Eric Baer, and Hyunmin Song  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15580-15588 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2214 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on improved gain and spectral control in co-extruded all-polymer multilayer distributed feedback (DFB) lasers achieved by folding and deliberate modification of the center “defect” layer. Because DFB laser gain is greater at spectral defects inside the reflection band than at the band edges, manipulation of structural defects can be used to alter spectral defects and thereby tune the output wavelength and improve laser efficiency. By experimentally terracing the layer that becomes the center of the fold, we tuned the lasing wavelength across the reflection stop-band (∼25 nm) in controllable, discrete steps. The increased density of states associated with the defect resulted in a lower lasing threshold and, typically, a 3- to 6-fold increase in lasing efficiency over non-folded samples.

© 2012 OSA

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(160.5470) Materials : Polymers
(140.3945) Lasers and laser optics : Microcavities
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 20, 2012
Revised Manuscript: June 7, 2012
Manuscript Accepted: June 7, 2012
Published: June 26, 2012

James H. Andrews, Michael Crescimanno, Nathan J. Dawson, Guilin Mao, Joshua B. Petrus, Kenneth D. Singer, Eric Baer, and Hyunmin Song, "Folding flexible co-extruded all-polymer multilayer distributed feedback films to control lasing," Opt. Express 20, 15580-15588 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuously melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem.19, 7520–7524 (2009). [CrossRef]
  2. K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express16, 10358–10363 (2008). [CrossRef] [PubMed]
  3. T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun.28, 2210–2216 (2007). [CrossRef]
  4. T. Komikado, S. Yoshida, and S. Umegaki, “Surface-emitting distributed-feedback dye laser of a polymer multilayer fabricated by spin coating,” Appl. Phys. Lett.89, 061123 (2006). [CrossRef]
  5. H. Takeuchi, K. Natsume, S. Suzuki, and H. Sakata, “Microcavity distributed-beedback laser using dye-doped polymeric thin films,” Electron. Lett.43, 30–32 (2007). [CrossRef]
  6. C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater.10, 920–923 (1998). [CrossRef]
  7. O. Garcia, R. Sastre, I. Garcia-Moreno, V. Martin, and A. Costela, “New laser hybrid materials based on POSS copolymers,” J. Phys. Chem. C112, 14710–14713 (2008). [CrossRef]
  8. J. Zhou, K. D. Singer, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “All-polymer distributed feedback and distributed Bragg-reflector lasers produced by roll-to-roll layer-multiplying co-extrusion,” Nonlinear Opt., Quantum Opt.41, 59–71 (2010).
  9. G. Mao, J. Andrews, M. Crescimanno, K. D. Singer, E. Baer, A. Hiltner, H. Song, and B. Shakya, “Co-extruded mechanically tunable multilayer elastomer laser,” Opt. Mater. Express1, 108–114 (2011). [CrossRef]
  10. E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett.67, 3380–3383 (1991). [CrossRef]
  11. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58, 2059–2062 (1987). [CrossRef] [PubMed]
  12. H. Yoshida, C. H. Lee, Y. Miura, A. Fujii, and M. Ozaki, “Optical tuning and switching of photonic defect modes in cholesteric liquid crystals,” Appl. Phys. Lett.90, 071107 (2007). [CrossRef]
  13. J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett.90, 083902 (2003). [CrossRef] [PubMed]
  14. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Dowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys.75, 1896–1899 (1994). [CrossRef]
  15. S. Nojima, “Enhancement of optical gain in two dimensional photonic crystals with active lattice points,” Jpn. J. Appl. Phys., Part 2 37, L565–L567 (1998). [CrossRef]
  16. J. Yoon, W. Lee, J.-M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett.88, 091102 (2006). [CrossRef]
  17. S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett.90, 261108 (2007). [CrossRef]
  18. V. Milner and A. Z. Genack, “Photon localization laser: Low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett.94, 073901 (2005). [CrossRef] [PubMed]
  19. P. Yeh, Optical Waves in Layered Media (Wiley Interscience, 2005).
  20. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86, 487–496 (1999). [CrossRef]
  21. J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals; Molding the Flow of Light (Princeton, 2008) p. 147. [PubMed]
  22. N. Le Thomas, V. Zabelin, and R. Houdré, “Influence of residual disorder on the anticrossing of Bloch modes probed in k space,” Phys. Rev. B78, 125301 (2008). [CrossRef]
  23. I. Rendina, F. Coppinger, B. Jalali, C. Lam, and E. Yablanovich, “Coupled Cavity Distributed-Resonance Photodetectors,” SPIE Photonics West ’983278, Integrated Optical Devices II, San Jose, Ca, Jan. 28–30 (1998). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited