OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 16059–16066

Stability of polymer-dielectric bi-layers for athermal silicon photonics

Vivek Raghunathan, Tomoyuki Izuhara, Jurgen Michel, and Lionel Kimerling  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 16059-16066 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temperature sensitivity of Si based rings can be nullified by the use of polymer over-cladding. Integration of athermal passive rings in an electronic-photonic architecture requires the possibility of multi-layer depositions with patterned structures. This requires establishing UV, thermal and plasma stability of the polymer during multi-layer stacking. UV stability is enhanced by UV curing to saturation levels. However, thermal stability is limited by the decomposition temperature of the polymer. Further, robust performance in oxidizing atmosphere and plasma exposure requires a SiO2/SiNx based dielectric coatings on the polymer. This communication uses a low temperature (130°C) High Density Plasma Chemical Vapor Deposition (HDPCVD) for dielectric encapsulation of polymer cladded Si rings to make them suitable for device layer deposition. UV induced cross-linking and annealing under vacuum make polymer robust and stable for Electron Cyclotron Resonance (ECR)-PECVD deposition of 500nm SiO2/SiNx. The thermo-optic (TO) properties of the polymer cladded athermal rings do not change after dielectric cap deposition opening up possibilities of device deposition on top of the passive athermal rings. Back-end CMOS compatibility requires polymer materials with high decomposition temperature (> 400°C) that have low TO coefficients. This encourages the use of SiNx core waveguides in the back-end architecture for athermal applications.

© 2012 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3130) Integrated optics : Integrated optics materials
(160.5470) Materials : Polymers
(160.6840) Materials : Thermo-optical materials
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.5750) Optical devices : Resonators
(230.7380) Optical devices : Waveguides, channeled
(310.1860) Thin films : Deposition and fabrication

ToC Category:
Integrated Optics

Original Manuscript: May 4, 2012
Revised Manuscript: May 31, 2012
Manuscript Accepted: June 7, 2012
Published: June 29, 2012

Vivek Raghunathan, Tomoyuki Izuhara, Jurgen Michel, and Lionel Kimerling, "Stability of polymer-dielectric bi-layers for athermal silicon photonics," Opt. Express 20, 16059-16066 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Rasras, D. M. Gill, S. S. Patel, K. Y. Tu, Y. K. Chen, A. E. White, A. T. S. Pomerene, D. N. Carothers, M. J. Grove, D. K. Sparacin, J. Michel, M. A. Beals, and L. C. Kimerling, “Demonstration Of A Fourth-Order Pole-Zero Optical Filter Integrated Using CMOS Processes,” J. Lightwave Technol.25(1), 87–92 (2007). [CrossRef]
  2. M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in Custom Integrated Circuits Conference (Institute of Electrical and Electronics Engineers, 2011), 978–1-4577–0233–5/11.
  3. V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. C. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express18(17), 17631–17639 (2010). [CrossRef] [PubMed]
  4. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett.20(11), 882–884 (2008). [CrossRef]
  5. V. Raghunathan, J. Hu, W. N. Ye, and J. Michel, and L. C. Kimerling, “Athermal silicon ring resonators,” in Conference on Integrated Photonic Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2010), paperIMC5.
  6. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express17(17), 14627–14633 (2009). [CrossRef] [PubMed]
  7. J.-M. Lee, D.-J. Kim, G.-H. Kim, O.-K. Kwon, K.-J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguides using slot structure,” Opt. Express16(3), 1645–1652 (2008). [CrossRef]
  8. International Technology Roadmap for Semiconductors, “Interconnect,” (ITRS, 2009). http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Interconnect.pdf
  9. S. Matsuo and M. Kiuchi, “Low temperature chemical vapor deposition method utilizing an electron cyclotron resonance plasma,” Jpn. J. Appl. Phys.22(Part 2, No. 4), L210–L212 (1983). [CrossRef]
  10. C. Doughty, D. C. Knick, J. B. Bailey, and J. E. Spencer, “Silicon nitride films deposited at substrate temperatures < 100 C in a permanent magnet electron cyclotron resonance plasma,” J. Vac. Sci. Technol. A17(5), 2612–2618 (1999). [CrossRef]
  11. K. L. Seaward, J. E. Turner, K. Nauka, and A. M. E. Nel, “Role of ions in electron cyclotron resonance plasma-enhanced chemical vapor deposition of silicon dioxide,” J. Vac. Sci. Technol. B13(1), 118–124 (1995). [CrossRef]
  12. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron.6(1), 54–68 (2000). [CrossRef]
  13. H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002). [CrossRef]
  14. M. Hasegawa and K. Horie, “Photophysics, photochemistry and optical properties of polyimides,” Prog. Polym. Sci.26(2), 259–335 (2001). [CrossRef]
  15. G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design and device structure,” Opt. Eng.50(7), 071112 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited