OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16186–16194

Near-field dynamic study of the nanoacoustic effect on the extraordinary transmission in gold nanogratings

Szu-Chi Yang, Hung-Pin Chen, Hui-Hsin Hsiao, Pei-Kuen Wei, Hung-Chun Chang, and Chi-Kuang Sun  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 16186-16194 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2087 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we report that nanoacoustic pulses can modulate the extraordinary optical transmission (EOT) in nanogratings with a high frequency bandwidth. This study was performed on gold nanogratings on top of a GaN crystal by combining a near-field scanning optical microscope with a femtosecond nanoultrasonic system. Experimental results indicate that the propagating longitudinal nanoacoustic pulses changed the refractive index of a GaN crystal and therefore modulated the near-field cavity mode behavior. Our finding suggests that the temporal modulation with a >11GHz bandwidth can be achieved, with a high potential for future temporal and high speed control on the EOT behavior in nanostructures.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(320.7090) Ultrafast optics : Ultrafast lasers
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Optics at Surfaces

Original Manuscript: April 3, 2012
Revised Manuscript: May 3, 2012
Manuscript Accepted: May 23, 2012
Published: July 2, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Szu-Chi Yang, Hung-Pin Chen, Hui-Hsin Hsiao, Pei-Kuen Wei, Hung-Chun Chang, and Chi-Kuang Sun, "Near-field dynamic study of the nanoacoustic effect on the extraordinary transmission in gold nanogratings," Opt. Express 20, 16186-16194 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K.-L. Lee, S.-H. Wu, and P.-K. Wei, “Intensity sensitivity of gold nanostructures and its application for high-throughput biosensing,” Opt. Express17(25), 23104–23113 (2009). [CrossRef] [PubMed]
  2. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res.41(8), 1049–1057 (2008). [CrossRef] [PubMed]
  3. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004). [CrossRef] [PubMed]
  4. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008). [CrossRef] [PubMed]
  5. L. Le Guyader, A. Kirilyuk, T. Rasing, G. A. Wurtz, A. V. Zayats, P. F. A. Alkemade, and I. I. Smolyaninov, “Coherent control of surface plasmon polariton mediated optical transmission,” J. Phys. D Appl. Phys.41(19), 195102 (2008). [CrossRef]
  6. F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett.100(11), 111105 (2012). [CrossRef]
  7. H.-P. Chen, Y.-C. Wen, Y.-H. Chen, C.-H. Tsai, K.-L. Lee, P.-K. Wei, J.-K. Sheu, and C.-K. Sun, “Femtosecond laser-ultrasonic investigation of plasmonic fields on the metal/gallium nitride interface,” Appl. Phys. Lett.97(20), 201102 (2010). [CrossRef]
  8. K. Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966). [CrossRef]
  9. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  10. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Academic, 1999)
  11. Y. Cui and S. He, “Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna,” Opt. Lett.34(1), 16–18 (2009). [CrossRef] [PubMed]
  12. S. A. Maier, Plasmonics: Fundamentals and Applications (Academic, 2007).
  13. D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B76(23), 235427 (2007). [CrossRef]
  14. B. Perrin, C. Rossignol, B. Bonello, and J. C. Jeannet, “Interferometric detection in picosecond ultrasonics,” Physica B263–264, 571–573 (1999). [CrossRef]
  15. Y.-K. Huang, G.-W. Chern, C.-K. Sun, Y. Smorchkova, S. Keller, U. Mishra, and S. P. DenBaars, “Generation of coherent acoustic phonons in strained GaN thin films,” Appl. Phys. Lett.79(20), 3361–3363 (2001). [CrossRef]
  16. K.-H. Lin, G.-W. Chern, C.-T. Yu, T.-M. Liu, C.-C. Pan, G.-T. Chen, J.-I. Chyi, S.-W. Huang, P.-C. Li, and C.-K. Sun, “Optical piezoelectric transducer for nano-ultrasonics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(8), 1404–1414 (2005). [CrossRef] [PubMed]
  17. K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nat. Nanotechnol.2(11), 704–708 (2007). [CrossRef] [PubMed]
  18. C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett.53(10), 989–992 (1984). [CrossRef]
  19. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter34(6), 4129–4138 (1986). [CrossRef] [PubMed]
  20. H.-N. Lin, R. J. Stoner, H. J. Maris, and J. Tauc, “Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry,” J. Appl. Phys.69(7), 3816–3822 (1991). [CrossRef]
  21. A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection,” Phys. Rev. Lett.82(5), 1044–1047 (1999). [CrossRef]
  22. O. B. Wright and V. E. Gusev, “Acoustic generation in crystalline silicon with femtosecond optical pulses,” Appl. Phys. Lett.66(10), 1190–1192 (1995). [CrossRef]
  23. C.-K. Sun, J.-C. Liang, and X.-Y. Yu, “Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields,” Phys. Rev. Lett.84(1), 179–182 (2000). [CrossRef] [PubMed]
  24. C.-K. Sun, J.-C. Liang, C. J. Stanton, A. Abare, L. Coldren, and S. P. DenBaars, “Large coherent acoustic-phonon oscillation observed in InGaN/GaN multiple-quantum wells,” Appl. Phys. Lett.75(9), 1249–1251 (1999). [CrossRef]
  25. G.-W. Chern, K.-H. Lin, and C.-K. Sun, “Transmission of light through quantum heterostructures modulated by coherent acoustic phonons,” J. Appl. Phys.95(3), 1114–1121 (2004). [CrossRef]
  26. S. Wu, P. Geiser, J. Jun, J. Karpinski, and R. Sobolewski, “Femtosecond optical generation and detection of coherent acoustic phonons in GaN single crystals,” Phys. Rev. B76(8), 085210 (2007). [CrossRef]
  27. Y.-C. Wen, G.-W. Chern, K.-H. Lin, J.-J. Yeh, and C.-K. Sun, “Femtosecond optical excitation of coherent acoustic phonons in a piezoelectric p-n junction,” Phys. Rev. B84(20), 205315 (2011). [CrossRef]
  28. R. G. Stearns and G. S. Kino, “Effect of electronic strain on photoacoustic generation in silicon,” Appl. Phys. Lett.47(10), 1048–1050 (1985). [CrossRef]
  29. C.-L. Hsieh, K.-H. Lin, S.-B. Wu, C.-C. Pan, J.-I. Chyi, and C.-K. Sun, “Reflection property of nano-acoustic wave at the air/GaN interface,” Appl. Phys. Lett.85(20), 4735–4737 (2004). [CrossRef]
  30. A. S. Sedra and K. C. Smith, Microelectronic Circuits (Academic, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited