OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16234–16244

Stability of resonant opto-mechanical oscillators

A. B. Matsko, A. A. Savchenkov, and L. Maleki  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16234-16244 (2012)
http://dx.doi.org/10.1364/OE.20.016234


View Full Text Article

Enhanced HTML    Acrobat PDF (802 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically study the frequency stability of an opto-mechanical oscillator based on resonant interaction of one mechanical, and two optical modes of the same optical microcavity. A generalized expression for the phase noise of the oscillator is derived using Langevin formalism and compared to the phase noise of existing electronic oscillators.

© 2012 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.1040) Optical devices : Acousto-optical devices
(230.4910) Optical devices : Oscillators
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Devices

History
Original Manuscript: May 11, 2012
Revised Manuscript: June 23, 2012
Manuscript Accepted: June 26, 2012
Published: July 2, 2012

Citation
A. B. Matsko, A. A. Savchenkov, and L. Maleki, "Stability of resonant opto-mechanical oscillators," Opt. Express 20, 16234-16244 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16234


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Carmon, H. Rokhsari, L. Yang, T. Kippenberg, and K. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett.94, 223902 (2005). [CrossRef] [PubMed]
  2. M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A74, 023813 (2006). [CrossRef]
  3. H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. Vahala, “Brownian noise in radiation-pressure-driven micromechnical oscillators,” Appl. Phys. Lett.89, 261109 (2006). [CrossRef]
  4. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15, 17172–17205 (2007). [CrossRef] [PubMed]
  5. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale” Science321, 1172–1176 (2008). [CrossRef] [PubMed]
  6. M. Hossein-Zadeh and K. J. Vahala, “Observation of injection locking in an optomechanical RF oscillator,” Appl. Phys. Lett.93, 191115 (2008).
  7. M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron.16, 276–287 (2010). [CrossRef]
  8. J. Zehnpfennig, G. Bahl, M. Tomes, and T. Carmon, “Surface optomechanics: calculating optically excited acoustical whispering gallery modes in microspheres,” Opt. Express19, 14240–14248 (2011). [CrossRef] [PubMed]
  9. K. J. Vahala, “Back-action limit of linewidth in an optomechanical oscillator,” Phys. Rev. A78, 023832 (2008). [CrossRef]
  10. D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE54, 329–330 (1966). [CrossRef]
  11. S. Tallur, S. Sridaran, S. A. Bhave, and T. Carmon, “Phase noise modeling of opto-mechanical oscillators,” Proc. of 2010 IEEE Int. Freq. Control Symp. (2010), Vol. 1, pp. 268–272. [CrossRef]
  12. A. B. Matsko, V. S. Ilchenko, A. A. Savchenkov, and L. Maleki, “Highly nondegenerate all-resonant optical parametric oscillator,” Phys. Rev. A66, 043814 (2002). [CrossRef]
  13. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett.103, 257403 (2009). [CrossRef]
  14. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett.102, 043902 (2009). [CrossRef] [PubMed]
  15. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett.102, 113601 (2009). [CrossRef] [PubMed]
  16. J. Li, H. Lee, T. Chen, O. Painter, and K. Vahala, “Chip-based Brillouin lasers as spectral purifiers for photonic systems,” arXiv.org>physics>arXiv:1201.4212v1 (2012).
  17. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett.16, 393–395 (1991). [CrossRef] [PubMed]
  18. A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A62, 023803 (2000). [CrossRef]
  19. A. Debut, S. Randoux, and J. Zemmouri, “Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B18, 556–567 (2001). [CrossRef]
  20. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett.18, 1813–1815 (2006). [CrossRef]
  21. G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Characterization of surface acoustic wave optomechanical oscillators,” Proc. 2011 IEEE International Frequency Control Symposium (FCS) (2011), Vol. 1, pp. 1–4. [CrossRef]
  22. G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun.2, 403 (2011). [CrossRef] [PubMed]
  23. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Surface acoustic wave opto-mechanical oscillator and frequency comb generator,” Opt. Lett.36, 3338–3340 (2011). [CrossRef] [PubMed]
  24. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. J. Seidel, and L. Maleki, “Surface acoustic wave frequency comb,” Proc. SPIE8236, 82361M (2012). [CrossRef]
  25. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Surface-acoustic wave opto-mechanical oscillator,” Proc. 2010 IEEE International Frequency Control Symposium (FCS) (2010), Vol. 1, pp. 183–188. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited