OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16291–16298

Single-mode and wavelength tunable lasers based on deep-submicron slots fabricated by standard UV-lithography

Tingting Yu, Li Zou, Lei Wang, and Jian-Jun He  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 16291-16298 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1446 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By reversing the pillars formed on SiO2 mask sidewalls, it is possible to fabricate deep-submicron slots with width down to 240nm by standard UV-lithography. Based on this newly developed process, a single-mode slotted Fabry-Perot laser and a wavelength tunable laser with periodically distributed slots are designed, fabricated and characterized. Numerical analysis shows the low-loss advantage of deep-submicron slots. Experimentally, the slotted Fabry-Perot laser showed a low threshold current of 22mA and the tunable slotted grating laser exhibited a maximum side mode suppression ratio (SMSR) of 43dB and a discretely tuning range of about 38nm. The method has excellent potential for low cost fabrication of photonic devices with deep-submicron features without using expensive tools such as the e-beam lithography.

© 2012 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 5, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: June 21, 2012
Published: July 3, 2012

Tingting Yu, Li Zou, Lei Wang, and Jian-Jun He, "Single-mode and wavelength tunable lasers based on deep-submicron slots fabricated by standard UV-lithography," Opt. Express 20, 16291-16298 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett.17(3), 681–683 (2005). [CrossRef]
  2. Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002). [CrossRef]
  3. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005). [CrossRef]
  4. H. Ishii, H. Oohashi, K. Kasaya, K. Tsuzuki, and Y. Tohmori, “High power (40 mW) L-band tunable DFB laser array module using current tuning,” in Optical Fiber Communication (OFC), Anaheim, CA, OTuE1 (2005).
  5. B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002). [CrossRef]
  6. J. P. Engelstaedter, B. Roycroft, F. Peters, and B. Corbett, “Wavelength tunable laser using an interleaved rear reflector,” IEEE Photon. Technol. Lett.22(1), 54–56 (2010). [CrossRef]
  7. D. C. Byrne, J. P. Engelstaedter, W.-H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron.15(3), 482–487 (2009). [CrossRef]
  8. L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs–InP 1.55-μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett.22(20), 1503–1505 (2010). [CrossRef]
  9. J.-J. He, “Proposal for Q-Modulated Semiconductor Laser,” IEEE Photon. Technol. Lett.19(5), 285–287 (2007). [CrossRef]
  10. J.-J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express16(6), 3896–3911 (2008). [CrossRef] [PubMed]
  11. R. Pregla and W. Pascher, “The method of lines,” in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T. Itoh, ed. (Wiley, 1989), pp. 381–446.
  12. Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett.18(24), 2605–2607 (2006). [CrossRef]
  13. Y. Shi, S. He, and S. Anand, “Ultracompact directional couplers realized in InP by utilizing feature size dependent etching,” Opt. Lett.33(17), 1927–1929 (2008). [CrossRef] [PubMed]
  14. G. Björk and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol.5(1), 140–146 (1987). [CrossRef]
  15. E. Michielssen, W. C. Chew, and D. S. Weile, “Genetic algorithm optimized perfectly matched layers for finite difference frequency domain applications,” in Antennas and Propagation Society International Symposium, 1996, AP-S. Digest (1996), Vol. 3, pp. 2106–2109.
  16. B. Corbett, C. Percival, and P. Lambkin, “Multiwavelength array of single-frequency stabilized Fabry–Perot lasers,” IEEE J. Quantum Electron.41(4), 490–494 (2005). [CrossRef]
  17. J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with ~40 dB side-mode suppression ratio,” Opt. Lett.36(21), 4230–4232 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited