OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16310–16320

Pencil beam coded aperture x-ray scatter imaging

Kenneth MacCabe, Kalyani Krishnamurthy, Amarpreet Chawla, Daniel Marks, Ehsan Samei, and David Brady  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 16310-16320 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (6097 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use coded aperture x-ray scatter imaging to interrogate scattering targets with a pencil beam. Observations from a single x-ray exposure of a flat-panel scintillation detector are used to simultaneously determine the along-beam positions and momentum transfer profiles of two crystalline powders (NaCl and Al). The system operates with a 3 cm range resolution and a momentum transfer resolution of 0.1 nm−1. These results demonstrate that a single snapshot can be used to estimate scattering properties along an x-ray beam, and serve as a foundation for volumetric imaging of scattering objects.

© 2012 OSA

OCIS Codes
(110.7440) Imaging systems : X-ray imaging
(340.7430) X-ray optics : X-ray coded apertures
(110.1758) Imaging systems : Computational imaging
(110.3200) Imaging systems : Inverse scattering

ToC Category:
X-ray Optics

Original Manuscript: April 9, 2012
Revised Manuscript: June 12, 2012
Manuscript Accepted: June 13, 2012
Published: July 3, 2012

Kenneth MacCabe, Kalyani Krishnamurthy, Amarpreet Chawla, Daniel Marks, Ehsan Samei, and David Brady, "Pencil beam coded aperture x-ray scatter imaging," Opt. Express 20, 16310-16320 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Brady, Optical Imaging and Spectroscopy (Wiley-OSA, 2009). [CrossRef]
  2. S. R. Gottesman and E. E. Fenimore, “New family of binary arrays for coded aperture imaging,” Appl. Opt.28, 4344–4352 (1989). [CrossRef] [PubMed]
  3. M. Harwit and N. J. A. Sloane, Hadamard Transform Optics (Academic Press, 1979).
  4. A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM Transactions on Graphics26, 69-1–69-12 (2007).
  5. D. J. Brady, N. P. Pitsianis, and X. Sun, “Reference structure tomography,” J. Opt. Soc. Am. A21, 1140–1147, (2004). [CrossRef]
  6. P. Potuluri, U. Gopinathan, J. Adleman, and D. Brady, “Lensless sensor system using a reference structure,” Opt. Express11, 965–974 (2003). [CrossRef] [PubMed]
  7. P. Potuluri, M. Xu, and D. Brady, “Imaging with random 3d reference structures,” Opt. Express11, 2134–2141, (2003). [CrossRef] [PubMed]
  8. M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express15, 14013–14027, (2007). [CrossRef] [PubMed]
  9. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt.47, B44–B51 (2008). [CrossRef] [PubMed]
  10. K. Choi and D. J. Brady, “Coded aperture computed tomography,” in “Adaptive Coded Aperture Imaging, Non-Imaging, and Unconventional Imaging Sensor Systems,” SPIE 7468, 74680B-1–74680B-10, (2009).
  11. D. L. Batchelar and I. A. Cunningham, “Material-specific analysis using coherent-scatter imaging,” Med. Phys.29, 1651–1660, (2002). [CrossRef] [PubMed]
  12. J.-P. Schlomka, A. Harding, U. van Stevendaal, M. Grass, and G. L. Harding, “Coherent scatter computed tomography: a novel medical imaging technique,” SPIE5030, 256–265, (2003). [CrossRef]
  13. M. T. M. Davidson, D. L. Batchelar, S. Velupillai, J. D. Denstedt, and I. A. Cunningham, “Laboratory coherent-scatter analysis of intact urinary stones with crystalline composition: a tomographic approach,” Phys. Med. Biol.50, 3907 (2005). [CrossRef] [PubMed]
  14. R. J. Cernik, K. H. Khor, and C. Hansson, “X-ray colour imaging,” Journal of the Royal Society Interface5, 477–481 (2008). [CrossRef]
  15. G. Harding and B. Schreiber, “Coherent x-ray scatter imaging and its applications in biomedical science and industry,” Radiat. Phys. Chem.56, 229–245, (1999). [CrossRef]
  16. G. Harding, “X-ray scatter tomography for explosives detection,” Radiat. Phys. Chem.71, 869–881 (2004). [CrossRef]
  17. R. W. Madden, J. Mahdavieh, R. C. Smith, and R. Subramanian, “An explosives detection system for airline security using coherent x-ray scattering technology,” SPIE7079, 707915-1–707915-11, (2008).
  18. C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive x-ray diffraction to identify explosive substances: Spectra analysis procedure optimization,” Nucl. Instrum. Methods Phys. Res. A623, 1050 – 1060, (2010). [CrossRef]
  19. G. Harding and J. Kosanetzky, “Elastic scatter computed tomography,” Phys. Med. Biol.30, 183–186, (1985). [CrossRef] [PubMed]
  20. J. Delfs and J.-P. Schlomka, “Energy-dispersive coherent scatter computed tomography,” Appl. Phys. Lett.88, 243506 (2006). [CrossRef]
  21. G. Harding, M. Newton, and J. Kosanetzky, “Energy-dispersive x-ray diffraction tomography,” Phys. Med. Biol.35, 33 (1990). [CrossRef]
  22. C. Hall, P. Barnes, J. Cockcroft, S. Colston, D. Husermann, S. Jacques, A. Jupe, and M. Kunz, “Synchrotron energy-dispersive x-ray diffraction tomography,” Nucl. Instrum. Methods Phys. Res. B140, 253 – 257 (1998). [CrossRef]
  23. O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive color x-ray diffraction imaging - a novel TEDDI imaging method,” Analyst134, 1802–1807, (2009). [CrossRef] [PubMed]
  24. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am.62, 55–59, (1972). [CrossRef]
  25. A. Chawla and E. Samei, “Geometrical repeatability and motion blur analysis of a new multi-projection x-ray imaging system,” IEEE Nuclear Science Symposium Conference Record5, 3170 –3173, (2006). [CrossRef]
  26. A. Chawla, S. Boyce, L. Washington, H. McAdams, and E. Samei, “Design and development of a new multi-projection x-ray system for chest imaging,” IEEE Trans. Nucl. Sci.56, 36–45, (2009). [CrossRef]
  27. J. M. Boone and J. A. Seibert, “An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kv,” Med. Phys.24, 1661–1670, (1997). [CrossRef] [PubMed]
  28. S. R. Beath and I. A. Cunningham, “Pseudomonoenergetic x-ray diffraction measurements using balanced filters for coherent-scatter computed tomography,” Med. Phys.36, 1839–1847, (2009). [CrossRef] [PubMed]
  29. C. Dodge and M. Flynn, “Advanced integral method for the simulation of diagnostic x-ray spectra,” Med. Phys.33, 1983 (2006).
  30. E. Kolaczyk and R. Nowak, “Multiscale likelihood analysis and complexity penalized estimation,” The Annals of Statistics32, 500–527, (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited