OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16366–16373

Role of supercurrents on vortices formation in polariton condensates

C. Antón, G. Tosi, M. D. Martín, L. Viña, A. Lemaître, and J. Bloch  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 16366-16373 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (979 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Observation of quantized vortices in non-equilibrium polariton condensates has been reported either by spontaneous formation and pinning in the presence of disorder or by imprinting them onto the signal or idler of an optical parametric oscillator (OPO). Here, we report a detailed analysis of the creation and annihilation of polariton vortex-antivortex pairs in the signal state of a polariton OPO by means of a short optical Gaussian pulse at a certain finite pump wave-vector. A time-resolved, interferometric analysis of the emission allows us to extract the phase of the perturbed condensate and to reveal the dynamics of the supercurrents created by the pulsed probe. This flow is responsible for the appearance of the topological defects when counter-propagating to the underlying currents of the OPO signal.

© 2012 OSA

OCIS Codes
(100.5070) Image processing : Phase retrieval
(020.1475) Atomic and molecular physics : Bose-Einstein condensates
(100.3175) Image processing : Interferometric imaging
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Atomic and Molecular Physics

Original Manuscript: May 1, 2012
Revised Manuscript: May 31, 2012
Manuscript Accepted: June 25, 2012
Published: July 3, 2012

C. Antón, G. Tosi, M. D. Martín, L. Viña, A. Lemaître, and J. Bloch, "Role of supercurrents on vortices formation in polariton condensates," Opt. Express 20, 16366-16373 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69, 3314–3317 (1992). [CrossRef] [PubMed]
  2. A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University Press, 2007). [CrossRef]
  3. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science269(5221), 198–201 (1995). [CrossRef] [PubMed]
  4. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature (London)443, 409–412 (2006). [CrossRef]
  5. A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature (London)457, 291–295 (2009). [CrossRef]
  6. A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nat. Phys.5, 805–810 (2009). [CrossRef]
  7. A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Leménager, R. Houdré, E. Giacobino, C. Ciuti, and A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science332, 1167–1170 (2011). [CrossRef] [PubMed]
  8. G. Grosso, G. Nardin, F. Morier-Genoud, Y. Léger, and B. Deveaud-Plédran, “Soliton instabilities and vortex street formation in a polariton quantum fluid,” Phys. Rev. Lett.107, 245301 (2011). [CrossRef]
  9. G. Nardin, G. Grosso, Y. Léger, B. Piȩtka, F. Morier-Genoud, and B. Deveaud-Plédran, “Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid,” Nat. Phys.7, 635–641 (2011). [CrossRef]
  10. M. Sich, D. N. Krizhanovskii, M. S. Skolnick, A. V. Gorbach, R. Hartley, D. V. Skryabin, E. A. Cerda-Méndez, K. Biermann, R. Hey, and P. V. Santos, “Observation of bright polariton solitons in a semiconductor microcavity,” Nat. Photonics6, 50–55 (2012). [CrossRef]
  11. D. N. Krizhanovskii, K. G. Lagoudakis, M. Wouters, B. Pietka, R. A. Bradley, K. Guda, D. M. Whittaker, M. S. Skolnick, B. Deveaud-Plédran, M. Richard, R. André, and L. S. Dang, “Coexisting nonequilibrium condensates with long-range spatial coherence in semiconductor microcavities,” Phys. Rev. B80, 045317 (2009). [CrossRef]
  12. R. Spano, J. Cuadra, C. Lingg, D. Sanvitto, M. D. Martín, P. R. Eastham, M. van der Poel, J. M. Hvam, and L. Viña, “Build up of off-diagonal long-range order in microcavity exciton-polaritons across the parametric threshold,” arXiv:1111.4894 (2011).
  13. I. Carusotto and C. Ciuti, “Spontaneous microcavity-polariton coherence across the parametric threshold: quantum Monte Carlo studies,” Phys. Rev. B72, 125335 (2005). [CrossRef]
  14. M. Wouters and I. Carusotto, “Absence of long-range coherence in the parametric emission of photonic wires,” Phys. Rev. B74, 245316 (2006). [CrossRef]
  15. F. Manni, K. G. Lagoudakis, B. Piȩtka, L. Fontanesi, M. Wouters, V. Savona, R. André, and B. Deveaud-Plédran, “Polariton condensation in a one-dimensional disordered potential,” Phys. Rev. Lett.106, 176401 (2011). [CrossRef] [PubMed]
  16. L. Onsager, “Statistical hidrodynamics,” Nuovo Cimento6(Suppl. 2), 279–287 (1949). [CrossRef]
  17. R. Feynman, Progress in Low Temperature Physics (Elsevier, 1955), Vol. 1. [CrossRef]
  18. D. N. Krizhanovskii, D. M. Whittaker, R. A. Bradley, K. Guda, D. Sarkar, D. Sanvitto, L. Viña, E. Cerda, P. Santos, K. Biermann, R. Hey, and M. S. Skolnick, “Effect of interactions on vortices in a nonequilibrium polariton condensate,” Phys. Rev. Lett.104, 126402 (2010). [CrossRef] [PubMed]
  19. D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lematre, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nature Phys.6, 527–533 (2010). [CrossRef]
  20. G. Tosi, M. Baudisch, D. Sanvitto, L. Viña, A Lemaître, J. Bloch, E. Karimi, B. Piccirillo, and L. Marrucci, “Optical induced vortices and persistent currents in polariton condensates,” J. Phys.: Conf. Ser.210, 012023 (2010). [CrossRef]
  21. G. Roumpos, M. D. Fraser, A. Löffler, S. Höfling, A. Forchel, and Y. Yamamoto, “Single vortex-antivortex pair in an exciton-polariton condensate,” Nat. Phys.7, 129–133 (2010). [CrossRef]
  22. K. G. Lagoudakis, F. Manni, B. Piȩtka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, and B. Deveaud-Plédran, “Probing the dynamics of spontaneous quantum vortices in polariton superfluids,” Phys. Rev. Lett.106, 115301 (2011). [CrossRef] [PubMed]
  23. K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton-polariton condensate,” Nat. Phys.4, 706–710 (2008). [CrossRef]
  24. K. G. Lagoudakis, T. Ostatnický, A. V. Kavokin, Y. G. Rubo, R. André, and B. Deveaud-Plédran, “Observation of half-quantum vortices in an exciton-polariton condensate,” Science326, 974–976 (2009). [CrossRef] [PubMed]
  25. F. M. Marchetti and M. H. Szymańska, “Vortices in polariton OPO superfluids,” arXiv:1107.4487 (2012).
  26. J. Keeling and N. G. Berloff, “Spontaneous rotating vortex lattices in a pumped decaying condensate,” Phys. Rev. Lett.100, 250401 (2008). [CrossRef] [PubMed]
  27. M. O. Borgh, J. Keeling, and N. G. Berloff, “Spatial pattern formation and polarization dynamics of a nonequilibrium spinor polariton condensate,” Phys. Rev. B81, 235302 (2010). [CrossRef]
  28. G. Tosi, F. M. Marchetti, D. Sanvitto, C. Antón, M. H. Szymańska, A. Berceanu, C. Tejedor, L. Marrucci, A. Lemaître, J. Bloch, and L. Viña, “Onset and dynamics of vortex-antivortex pairs in polariton optical parametric oscillator superfluids,” Phys. Rev. Lett.107, 036401 (2011). [CrossRef] [PubMed]
  29. M. Perrin, P. Senellart, A. Lemaître, and J. Bloch, “Polariton relaxation in semiconductor microcavities: Efficiency of electron-polariton scattering,” Phys. Rev. B72, 075340 (2005). [CrossRef]
  30. The detuning δ is defined as the difference between the bare cavity mode, EC, and exciton, EX, energies at k = 0.
  31. M. Liebling, T. Blu, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A21, 367–377 (2004). [CrossRef]
  32. For the supercurrent calculations, eventual phase jumps between 0 and 2π, where the gradient of the phase is not well defined, (see, for example the region between the white arrows in the Fig. 3(a)), are circumvented using ∇Φs (r,t) = −i∇ exp(iΦs (r,t)) / exp (iΦs (r,t)).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited