OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16480–16489

Effective permittivity for resonant plasmonic nanoparticle systems via dressed polarizability

SeokJae Yoo and Q-Han Park  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 16480-16489 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1571 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an effective medium theory for resonant plasmonic nanoparticle systems. By utilizing the notion of dressed polarizability to describe dipolar particle interactions, we show that even highly concentrated, resonant plasmonic particles can be correctly described by the effective medium theory. The effective permittivity tensor of a nanoparticle monolayer is found explicitly and the resulting absorbance spectrum is shown to agree with rigorous numerical results from the FDTD model. The effective theory based on dressed polarizability provides a powerful tool to tailor resonant optical behaviors and design diverse plasmonic devices.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: May 17, 2012
Revised Manuscript: June 29, 2012
Manuscript Accepted: June 29, 2012
Published: July 5, 2012

SeokJae Yoo and Q-Han Park, "Effective permittivity for resonant plasmonic nanoparticle systems via dressed polarizability," Opt. Express 20, 16480-16489 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005). [CrossRef] [PubMed]
  2. W. Zhang, B. S. Yeo, T. Schmid, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C111(4), 1733–1738 (2007). [CrossRef]
  3. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett.95(9), 095504 (2005). [CrossRef] [PubMed]
  4. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett.93(12), 121904 (2008). [CrossRef]
  5. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998). [CrossRef] [PubMed]
  6. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010). [CrossRef] [PubMed]
  7. T. Ming, X. Kou, H. Chen, T. Wang, H.-L. Tam, K.-W. Cheah, J.-Y. Chen, and J. Wang, “Ordered gold nanostructure assemblies formed by droplet evaporation,” Angew. Chem. Int. Ed. Engl.47(50), 9685–9690 (2008). [CrossRef] [PubMed]
  8. M. Quinten and U. Kreibig, “Absorption and elastic scattering of light by particle aggregates,” Appl. Opt.32(30), 6173–6182 (1993). [CrossRef] [PubMed]
  9. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  10. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004). [CrossRef]
  11. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley-VCH Verlag GmbH & Co. KGaA., 1998).
  12. T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford University Press, 1999).
  13. R. Ruppin, “Validity range of the Maxwell-Garnett theory,” Phys. Status Solidi B87(2), 619–624 (1978). [CrossRef]
  14. R. G. Barrera, G. Monsivais, and W. L. Mochán, “Renormalized polarizability in the Maxwell Garnett theory,” Phys. Rev. B Condens. Matter38(8), 5371–5379 (1988). [CrossRef] [PubMed]
  15. R. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Villaseor, and W. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B Condens. Matter43(17), 13819–13826 (1991). [CrossRef] [PubMed]
  16. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett.8(11), 581–583 (1983). [CrossRef] [PubMed]
  17. A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B26(3), 517–527 (2009). [CrossRef]
  18. A. Vial, “Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method,” J. Opt. A, Pure Appl. Opt.9(7), 745–748 (2007). [CrossRef]
  19. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys.125(16), 164705 (2006). [CrossRef] [PubMed]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  21. R. Rojas and F. Claro, “Electromagnetic response of an array of particles: normal-mode theory,” Phys. Rev. B Condens. Matter34(6), 3730–3736 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited