OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16504–16509

THz generation using extrinsic photoconductivity at 1550 nm

J. R. Middendorf and E. R. Brown  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 16504-16509 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1399 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



1550-nm pulses from a fiber-mode-locked laser are used to drive an ErAs:GaAs photoconductive switch, resulting in easily measured THz radiation with average broadband (~0.1 to 1.0 THz) power of ≈0.1 mW. The new THz switching mechanism is attributed to fast extrinsic photoconductivity that generates photocarriers (probably electrons) from the ErAs nanoparticles embedded in the material with a lifetime of ~0.45 ps (354 GHz bandwidth). This is the first known demonstration of useful THz power generation by extrinsic photoconductivity.

© 2012 OSA

OCIS Codes
(160.5140) Materials : Photoconductive materials
(230.6080) Optical devices : Sources
(260.5150) Physical optics : Photoconductivity
(320.7080) Ultrafast optics : Ultrafast devices
(350.5610) Other areas of optics : Radiation
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Ultrafast Optics

Original Manuscript: February 28, 2012
Revised Manuscript: March 29, 2012
Manuscript Accepted: March 30, 2012
Published: July 6, 2012

J. R. Middendorf and E. R. Brown, "THz generation using extrinsic photoconductivity at 1550 nm," Opt. Express 20, 16504-16509 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V-semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron.28(10), 2464–2472 (1992). [CrossRef]
  2. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett.90(10), 101119 (2007). [CrossRef]
  3. D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett.86(5), 051908 (2005). [CrossRef]
  4. F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett.92, 131117 (2008).
  5. N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett.87(19), 193510 (2005). [CrossRef]
  6. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett.86(5), 051104 (2005). [CrossRef]
  7. A. Fekecs, M. Bernier, D. Morris, M. Chicoine, F. Schiettekatte, P. Charette, and R. Arès, “Fabrication of high resistivity cold-implanted InGaAsP photoconductors for efficient pulsed terahertz devices,” Opt. Mater. Express1(7), 1165–1177 (2011). [CrossRef]
  8. R. J. B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, “THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions,” Opt. Express19(27), 25911–25917 (2011). [CrossRef] [PubMed]
  9. J. L. Hudgins, G. S. Simin, E. Santi, and M. S. Khan, “An Assesment of Wide Bandgap Semiconductors for Power Devices,” IEEE Trans. Power Electron.18(3), 907–914 (2003). [CrossRef]
  10. P. Grenier and J. F. Whitaker, “Subband gap carrier dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett.70(15), 1998–2000 (1997). [CrossRef]
  11. H. Erlig, S. Wang, T. Azfar, A. Udupa, H. R. Fetterman, and D. C. Streit, “LT-GaAs detector with 451 fs response at 1.55-µm via two-photon absorption,” Electron. Lett.35(2), 173–174 (1999). [CrossRef]
  12. Y.-J. Chiu, S. Z. Zhang, S. B. Fleischer, J. E. Bowers, and U. K. Mishra, “GaAs-based 1.55- μm high speed, high saturation power, low-temperature grown GaAs pin photodetector,” Electron. Lett.34(12), 1253–1255 (1998). [CrossRef]
  13. C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, J. W. Dong, and C. J. Palmstrom, “Self assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett.75(22), 3548–3550 (1999). [CrossRef]
  14. J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12 µW peak output power,” Appl. Phys. Lett.85(18), 3983 (2004). [CrossRef]
  15. Z. D. Taylor, E. R. Brown, J. E. Bjarnason, M. P. Hanson, and A. C. Gossard, “Resonant-optical-cavity photoconductive switch with 0.5% conversion efficiency and 1.0 W peak power,” Opt. Lett.31(11), 1729–1731 (2006). [CrossRef] [PubMed]
  16. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett.88(25), 251119 (2006). [CrossRef]
  17. T. Tongue, Zomega Terahertz Corp., 15 Tech Valley Dr., Suite 102, East Greenbush, NY 12061, private correspondence.
  18. P. Kruse, “Optical and Infrared Detectors” in Optical and Infrared Detectors, 19, 5–69 (Springer, 1980).
  19. J. Yuan, W. Xie, H. Liu, J. Liu, H. Li, X. Wang, and W. Jiang, “High-Power Semi-Insulating GaAs Photoconductive Semiconductor Switch Employing Extrinsic Photoconductivity,” IEEE Trans. Plasma Sci.37(10), 1959–1963 (2009). [CrossRef]
  20. K. E. Singer, P. Rutter, A. R. Peaker, and A. C. Wright, “Self-organizing growth of erbium arsenide quantum does and wires in gallium arsenide by molecular beam epitaxy,” Appl. Phys. Lett.64(6), 707–709 (1994). [CrossRef]
  21. E. R. Brown, A. Bacher, D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Evidence for a strong surface-plasmon resonance on ErAs nanoparticles in GaAs,” Phys. Rev. Lett.90(7), 077403 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited