OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16596–16610

Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16596-16610 (2012)
http://dx.doi.org/10.1364/OE.20.016596


View Full Text Article

Enhanced HTML    Acrobat PDF (1268 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hafnium dioxide films deposited using electron-beam evaporation tend to exhibit high tensile stresses, particularly when deposited on low-thermal-expansion substrates for use in a low-relative-humidity environment. Hafnia has been shown to be a critical material, however, for use in high-peak-power laser coatings, providing exceptional deposition control and laser-damage resistance. To correct for tensile thin-film stresses in hafnia/silica multilayer coatings, alumina compensation layers were incorporated in the multilayer design. Determination of the stresses resulting from alumina layers in different coating designs has led to the realization of the influence of water diffusion and the diffusion-barrier properties of alumina that must be considered. The inclusion of alumina layers in a hafnia/silica multilayer provides the ability to produce low-compressive-stress, high-laser-damage-threshold coatings.

© 2012 OSA

OCIS Codes
(310.0310) Thin films : Thin films
(310.3840) Thin films : Materials and process characterization
(310.4925) Thin films : Other properties (stress, chemical, etc.)

ToC Category:
Thin Films

History
Original Manuscript: April 9, 2012
Manuscript Accepted: May 22, 2012
Published: July 9, 2012

Citation
J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, "Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers," Opt. Express 20, 16596-16610 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16596


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt.32(28), 5567–5574 (1993). [CrossRef] [PubMed]
  2. J. F. Anzellotti, D. J. Smith, R. J. Sczupak, and Z. R. Chrzan, “Stress and environmental shift characteristics of HfO2/SiO2 multilayer coatings,” in Laser-Induced Damage in Optical Materials:1996 H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau eds. (SPIE, Bellingham, WA, 1997), 2966, 258−264.
  3. J. B. Oliver, J. Howe, A. Rigatti, D. J. Smith, and C. Stolz, “High precision coating technology for large aperture NIF optics,” in Optical Interference Coatings OSA Technical Digest (Optical Society of America, Washington, DC, 2001), Paper ThD2.
  4. J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP laser system,” in Laser-Induced Damage in Optical Materials:2005 G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. J. Soileau, and C. J. Stolz eds. (SPIE, Bellingham, WA, 2005), 5991, 394−401.
  5. J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351 nm,” in Laser-Induced Damage in Optical Materials:2008 G. J. Exarhos, D. Ristau, M. J. Soileau, and C. J. Stolz eds. (SPIE, Bellingham, WA, 2008), 7132, Paper 71320J.
  6. H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys.78(2), 962–968 (1995). [CrossRef]
  7. B. Pinot, H. Leplan, F. Houbre, E. Lavastre, J. C. Poncetta, and G. Chabassier, “Laser Mégajoule 1.06μm mirrors production, with very high laser damage threshold,” in Laser-Induced Damage in Optical Materials 2001 G. J. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau, and C. J. Stolz eds. (SPIE, Bellingham, WA, 2002), 4679, 234–241.
  8. C. J. Stolz, “Status of NIF mirror technologies for completion of the NIF facility,” in Advances in Optical Thin Films III N. Kaiser, M. Lequime, and H. A. Macleod eds. (SPIE, Bellingham, WA, 2008), 7101, Paper 710115.
  9. D. J. Smith, M. McCullough, C. Smith, T. Mikami, and T. Jitsuno, “Low stress ion-assisted coatings on fused silica substrates for large aperture laser pulse compression gratings,” in Laser-Induced Damage in Optical Materials:2008 G. J. Exarhos, D. Ristau, M. J. Soileau, and C. J. Stolz eds. (SPIE, Bellingham, WA, 2008), 7132, Paper 71320E.
  10. L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation, and Surface Evolution (Cambridge University Press, Cambridge, UK, 2003), 60–83.
  11. E. Lavastre, J. Néauport, J. Duchesne, H. Leplan, and F. Houbre, “Polarizers coatings for the Laser Megajoule prototype,” in Optical Interference Coatings OSA Technical Digest (Optical Society of America, Washington, DC, 2004), Paper TuF3.
  12. J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, and R. D. Hand, “Modification of stresses in evaporated hafnia coatings for use in vacuum,” in Optical Interference Coatings OSA Technical Digest (Optical Society of America, Washington, DC, 2010), Paper WD6.
  13. M. Henyk, D. Wolfframm, and J. Reif, “Ultra short laser pulse induced charged particle emission from wide bandgap crystals,” Appl. Surf. Sci.168(1-4), 263–266 (2000). [CrossRef]
  14. M. Reichling, A. Bodemann, and N. Kaiser, “Defect induced laser damage in oxide multilayer coatings for 248 nm,” Thin Solid Films320(2), 264–279 (1998). [CrossRef]
  15. R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films410(1-2), 86–93 (2002). [CrossRef]
  16. G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character82(553), 172–175 (1909). [CrossRef]
  17. J. W. Hutchison and T. Y. Wu eds. Advances in Applied Mechanics (Academic Press, 1992), 29.
  18. J. W. Hutchison and Z. Suo, “Mixed mode cracking in layered materials,” in Advances in Applied Mechanics29, J. W. Hutchison and T. Y. Wu eds. (Academic Press, 1992), 63−191.
  19. A. Tikhonravov, M. Trubetskov, T. Amotchkina, and M. Kokarev, “Key role of the coating total optical thickness in solving design problems,” in Advances in Optical Thin Films C. Amra, N. Kaiser, and H. A. Macleod eds., (SPIE, Bellingham, WA, 2004), 5250, 312–321.
  20. M. Ohring, Materials Science of Thin Films: Deposition and Structure 2nd ed. (Academic Press, 2002), 723−730.
  21. J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, J. Spaulding, D. Sadowski, Z. R. Chrzan, R. D. Hand, D. R. Gibson, I. Brinkley, and F. Placido, “Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings,” Appl. Opt.50(9), C19–C26 (2011). [CrossRef] [PubMed]
  22. S. Papernov and A. W. Schmid, “Localized absorption effects during 351 nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys.82(11), 5422–5432 (1997). [CrossRef]
  23. J. Proost and F. Spaepen, “Evolution of the growth stress, stiffness, and microstructure of alumina thin films during vapor deposition,” J. Appl. Phys.91(1), 204–216 (2002). [CrossRef]
  24. Y. Shen, H. He, S. Shao, Z. Fan, and J. Shao, “Influences of the film thickness on residual stress of the HfO2 thin films,” Rare Metal. Mater. Eng.36, 412–415 (2007).
  25. J. B. Oliver and D. Talbot, “Optimization of deposition uniformity for large-aperture National Ignition Facility substrates in a planetary rotation system,” Appl. Opt.45(13), 3097–3105 (2006). [CrossRef] [PubMed]
  26. D. J. Smith, A. Staley, R. Eriksson, and G. Algar, “Counter-rotating planetary design for large rectangular substrates,” in Proceedings of the 41st Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, NM, 1998), 193−196.
  27. A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, Optilayer Ltd., http://www.optilayer.com (9 June 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited