OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16611–16617

Femtosecond excitation of radial breathing mode in 2-D arrayed GaN nanorods

Hung-Pin Chen, Yueh-Chun Wu, Pierre Adrien Mante, Shang-Ju Tu, Jinn-Kong Sheu, and Chi-Kuang Sun  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 16611-16617 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1218 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Radial breathing oscillation of 2-D arrayed GaN nanorods was successfully excited in rods with different diameters by using femtosecond transient reflectivity measurement. Through analyzing thus measured diameter dependent oscillation frequency, we discovered that modification of the mechanical property appeared in the 2-D arrayed piezoelectric GaN nanorods, fabricated on top of a bulk substrate, when the rod diameter was on the order of or less than 50 nm. Our measurement observed a much reduced elastic stiffness constant (C11) of 193 ± 24 GPa in 35nm diameter nanorods, compared with the 365 ± 2 GPa in bulk GaN. This size-reduction induced mechanical modification would be a critical factor to be considered for future sensing and energy applications. Our study also provides a new spectroscopic method to explore the size-reduction-induced softening effect through the measurement of the radial breathing oscillations.

© 2012 OSA

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(320.5390) Ultrafast optics : Picosecond phenomena
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Integrated Optics

Original Manuscript: April 18, 2012
Revised Manuscript: May 31, 2012
Manuscript Accepted: June 3, 2012
Published: July 9, 2012

Hung-Pin Chen, Yueh-Chun Wu, Pierre Adrien Mante, Shang-Ju Tu, Jinn-Kong Sheu, and Chi-Kuang Sun, "Femtosecond excitation of radial breathing mode in 2-D arrayed GaN nanorods," Opt. Express 20, 16611-16617 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K.-Q. Peng and S.-T. Lee, “Silicon Nanowires for Photovoltaic Solar Energy Conversion,” Adv. Mater. (Deerfield Beach Fla.)23(2), 198–215 (2011). [CrossRef] [PubMed]
  2. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009). [CrossRef]
  3. C.-T. Huang, J. Song, W. F. Lee, Y. Ding, Z. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, “GaN nanowire arrays for high-output Nanogenerators,” J. Am. Chem. Soc.132(13), 4766–4771 (2010). [CrossRef] [PubMed]
  4. R. Agrawal, B. Peng, and H. D. Espinosa, “Experimental-computational investigation of ZnO nanowires strength and fracture,” Nano Lett.9(12), 4177–4183 (2009). [CrossRef] [PubMed]
  5. J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett.98(2), 021110 (2011). [CrossRef]
  6. Y. Chen, I. Stevenson, R. Pouy, L. Wang, D. N. McIlroy, T. Pounds, M. G. Norton, and D. E. Aston, “Mechanical elasticity of vapour-liquid-solid grown GaN nanowires,” Nanotechnology18(13), 135708 (2007). [CrossRef] [PubMed]
  7. P. Yu, C. H. Chiu, Y.-R. Wu, H. H. Yen, J. R. Chen, C. C. Kao, H. W. Yang, H. C. Kuo, T. C. Lu, W. Y. Yeh, and S. C. Wang, “Strain relaxation induced microphotoluminescence characteristics of a single InGaN-based nanopillar fabricated by focused ion beam milling,” Appl. Phys. Lett.93(8), 081110 (2008). [CrossRef]
  8. R. A. Bernal, R. Agrawal, B. Peng, K. A. Bertness, N. A. Sanford, A. V. Davydov, and H. D. Espinosa, “Effect of growth orientation and diameter on the elasticity of GaN nanowires. A combined in situ TEM and atomistic modeling investigation,” Nano Lett.11(2), 548–555 (2011). [CrossRef] [PubMed]
  9. J. J. Brown, A. I. Baca, K. A. Bertness, D. A. Dikin, R. S. Ruoff, and V. M. Bright, “Tensile measurement of single crystal gallium nitride nanowires on MEMS test stages,” Sens. Actuators A Phys.166(2), 177–186 (2011). [CrossRef]
  10. C.-Y. Nam, P. Jaroenapibal, D. Tham, D. E. Luzzi, S. Evoy, and J. E. Fischer, “Diameter-dependent electromechanical properties of GaN nanowires,” Nano Lett.6(2), 153–158 (2006). [CrossRef] [PubMed]
  11. T. Henry, K. Kim, Z. Ren, C. Yerino, J. Han, and H. X. Tang, “Directed growth of horizontally aligned gallium nitride nanowires for nanoelectromechanical resonator arrays,” Nano Lett.7(11), 3315–3319 (2007). [CrossRef] [PubMed]
  12. S. O. Mariager, D. Khakhulin, H. T. Lemke, K. S. Kjaer, L. Guerin, L. Nuccio, C. B. Sørensen, M. M. Nielsen, and R. Feidenhans’l, “Direct observation of acoustic oscillations in InAs nanowires,” Nano Lett.10(7), 2461–2465 (2010). [CrossRef] [PubMed]
  13. H. Lange, M. Mohr, M. Artemyev, U. Woggon, and C. Thomsen, “Direct observation of the radial breathing mode in CdSe Nanorods,” Nano Lett.8(12), 4614–4617 (2008). [CrossRef] [PubMed]
  14. C. Guillon, P. Langot, N. Del Fatti, F. Vallée, A. S. Kirakosyan, T. V. Shahbazyan, T. Cardinal, and M. Treguer, “Coherent acoustic vibration of metal nanoshells,” Nano Lett.7(1), 138–142 (2007). [CrossRef] [PubMed]
  15. A. Amziane, L. Belliard, F. Decremps, and B. Perrin, “Ultrafast acoustic resonance spectroscopy of gold nanostructures: Towards a generation of tunable transverse waves,” Phys. Rev. B83(1), 014102 (2011). [CrossRef]
  16. M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc.125(48), 14925–14933 (2003). [CrossRef] [PubMed]
  17. C.-C. Yu, C.-F. Chu, J.-Y. Tsai, H.-W. Huang, T.-H. Hsueh, C.-F. Lin, and S.-C. Wang, “Gallium nitride nanorods fabricated by inductively coupled plasma reactive ion etching,” Jpn. J. Appl. Phys.41(Part 2, No. 8B), L910–L912 (2002). [CrossRef]
  18. D. Zhaung and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,” Mater. Sci. Eng. Rep.48(1), 1–46 (2005). [CrossRef]
  19. M. Yamaguchi, T. Yagi, T. Azuhata, T. Sota, K. Suzuki, S. Chichibu, and S. Nakamura, “Brillouin scattering study of gallium nitride: elastic stiffness constants,” J. Phys. Condens. Matter9(1), 241–248 (1997). [CrossRef]
  20. J.-F. Robillard, A. Devos, I. Roch-Jeune, and P. A. Mante, “Collective acoustic modes in various two-dimensional crystals by ultrafast acoustics: Theory and experiment,” Phys. Rev. B78(6), 064302 (2008). [CrossRef]
  21. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys.94(6), 3675–3696 (2003). [CrossRef]
  22. A. Polian, M. Grimsditch, and I. Grzegory, “Elastic constants of gallium nitride,” J. Appl. Phys.79(6), 3343–3344 (1996). [CrossRef]
  23. Z. Wang, X. Zu, L. Yang, F. Gao, and W. J. Weber, “Molecular dynamics simulation on the buckling behavior of GaN nanowires under uniaxial compression,” Physica E40(3), 561–566 (2008). [CrossRef]
  24. A. Gulans and I. Tale, “Ab initio calculation of wurtzite-type GaN nanowires,” Phys. Status Solidi., C Curr. Top. Solid State Phys.4(3), 1197–1200 (2007). [CrossRef]
  25. H. Liang, M. Upmanyu, and H. Huang, “Size-dependent elasticity of nanowires: Nonlinear effects,” Phys. Rev. B71(24), 241403 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited