OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16631–16638

Funnel-based biomimetic volume optics

E. DelRe, A. Pierangelo, J. Parravicini, S. Gentilini, and A. J. Agranat  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16631-16638 (2012)
http://dx.doi.org/10.1364/OE.20.016631


View Full Text Article

Enhanced HTML    Acrobat PDF (1171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the use of three-dimensional funnel index of refraction patterns analogous to those of retinal Müller cells as support for tunable and multi-functional volume optical component miniaturization and integration. Our experiments in paraelectric photorefractive crystals show how a single funnel can act both as a waveguide and a tunable focusing/defocusing micro-lens. Pairing multiple funnel patterns, we are also able to demonstrate ultra-compact tunable beam-splitting, with distinct guided output modes in under 1mm of propagation.

© 2012 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(230.3120) Optical devices : Integrated optics devices
(190.6135) Nonlinear optics : Spatial solitons
(250.6715) Optoelectronics : Switching

ToC Category:
Optical Devices

History
Original Manuscript: February 10, 2012
Revised Manuscript: May 30, 2012
Manuscript Accepted: June 1, 2012
Published: July 9, 2012

Citation
E. DelRe, A. Pierangelo, J. Parravicini, S. Gentilini, and A. J. Agranat, "Funnel-based biomimetic volume optics," Opt. Express 20, 16631-16638 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16631


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Nat. Acad. Sci. USA104, 8287–8292 (2007). [CrossRef] [PubMed]
  2. A. M. Labin and E. N. Ribak, “Retinal glial cells Enhance human vision acuity,” Phys. Rev. Lett.104, 158102 (2010). [CrossRef] [PubMed]
  3. E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett.91, 081105 (2007). [CrossRef]
  4. A. Pierangelo, E. DelRe, A. Ciattoni, E. Palange, A. J. Agranat, and B. Crosignani, “Linear writing of waveguides in bulk photorefractive crystals through a two-step polarization sequence,” J. Opt. A. Pure Appl. Opt.10, 064005 (2008). [CrossRef]
  5. A. Pierangelo, A. Ciattoni, E. Palange, A. J. Agranat, and E. DelRe, “Electro-activation and electro-morphing of photorefractive funnel waveguides,” Opt. Express17, 22659–22665 (2009). [CrossRef]
  6. N. J. Cerf, C. Adami, and P. G. Kwait, “Optical simulation of quantum logic,” Phys. Rev. A57, R1477–R1480 (1998). [CrossRef]
  7. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008). [CrossRef] [PubMed]
  8. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun.2, 566 (2011). [CrossRef] [PubMed]
  9. Y. Frauel and B. Javidi, “Neural network for three-dimensional object recognition based on digital holography,” Opt. Lett.26, 1478–1480 (2001). [CrossRef]
  10. R. Heintzmann and M. G. L. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics3, 362–364 (2009). [CrossRef]
  11. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun.1, 81 (2010). [CrossRef] [PubMed]
  12. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974).
  13. K. Miura, J. Qiu, H. Inouye, and T. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997). [CrossRef]
  14. W. Torruellas and S. Trillo (eds.), Spatial Solitons, (Springer, New York, 2001).
  15. T. M. Monro, C. M. De Sterke, and L. Poladian, “Self-writing a waveguide in glass using photosensitivity,” Opt. Commun.119, 523–526 (1995). [CrossRef]
  16. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett.21, 24–26 (1996). [CrossRef] [PubMed]
  17. K. Dorkenoo, O. Cregut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett.27, 1782–1784 (2002). [CrossRef]
  18. M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett.20, 2066–2068 (1995). [CrossRef] [PubMed]
  19. E. DelRe, M. Tamburrini, and A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett.25, 963–965 (2000). [CrossRef]
  20. E. DelRe, B. Crosignani, E. Palange, and A. J. Agranat, “Electro-optic beam manipulation through photorefractive needles,” Opt. Lett.27, 2188–2190 (2002). [CrossRef]
  21. M. Asaro, M. Sheldon, Z. G. Chen, O. Ostroverkhova, and W. E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett.30, 519–521 (2005). [CrossRef] [PubMed]
  22. M. Chauvet, A. Q. Gou, G. Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys.99, 113107–113112 (2006). [CrossRef]
  23. M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett.21, 794–796 (1996). [CrossRef] [PubMed]
  24. C. Dari-Salisburgo, E. DelRe, and E. Palange, “Molding and stretched evolution of optical solitons in cumulative nonlinearities,” Phys. Rev. Lett.91, 263903–263906 (2003). [CrossRef]
  25. E. DelRe and E. Palange, “Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons,” J. Opt. Soc. Am. B23, 2323–2327 (2006). [CrossRef]
  26. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988).
  27. A. Agranat, R. Hofmeister, and A. Yariv, “Characterization of a new photorefractive material: Kl-yLyT1-xNx,” Opt. Lett.17, 713–715 (1992). [CrossRef] [PubMed]
  28. W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett.80, 3240–3243 (1998). [CrossRef]
  29. E. DelRe, A. Ciattoni, and A. J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett.26, 908–910 (2001). [CrossRef]
  30. E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett.85, 5499–5501 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited