OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16690–16703

Complex Bloch-modes calculation of plasmonic crystal slabs by means of finite elements method

Giuseppe Parisi, Pierfrancesco Zilio, and Filippo Romanato  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 16690-16703 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1631 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a Finite Element Method (FEM) to calculate the complex valued k(ω) dispersion curves of a photonic crystal slab in presence of both dispersive and lossy materials. In particular the method can be exploited to study plasmonic crystal slabs. We adopt Perfectly Matched Layers (PMLs) in order to truncate the open boundaries of the model, including their related anisotropic permittivity and permeability tensors in the weak form of Helmholtz's eigenvalue equation. Results of the model are presented in the interesting case of a holey metal film enabling to study the observed extraordinary optical transmission properties in term of the plasmonic Bloch modes of the structure.

© 2012 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(240.6680) Optics at surfaces : Surface plasmons
(260.2030) Physical optics : Dispersion
(050.5298) Diffraction and gratings : Photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Photonic Crystals

Original Manuscript: May 9, 2012
Revised Manuscript: May 29, 2012
Manuscript Accepted: June 13, 2012
Published: July 9, 2012

Giuseppe Parisi, Pierfrancesco Zilio, and Filippo Romanato, "Complex Bloch-modes calculation of plasmonic crystal slabs by means of finite elements method," Opt. Express 20, 16690-16703 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Rather, Surface Plasmons (Springer-Verlag, 1988).
  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  4. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005). [CrossRef]
  5. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics, (Springer, 2007).
  6. F. J. Garcia de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007). [CrossRef]
  7. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010). [CrossRef]
  8. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008). [CrossRef] [PubMed]
  9. P. Lalanne, J. C. Rodier, and J. P. Hugonin, “Surface plasmons of metallic surfaces perforated by nano-hole arrays,” J. Opt. A, Pure Appl. Opt. 7(8), 422–426 (2005). [CrossRef]
  10. J. Bravo-Abad, L. Martín-Moreno, F. J. García-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76(24), 241102 (2007). [CrossRef]
  11. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Plasmonic metamaterials based on holey metallic films,” J. Phys. Condens. Matter 20(30), 304215 (2008).
  12. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and D. Robert, Meade, Photonic Crystals - Molding the Flow of Light, 2nd ed. (Princeton University Press, 2007).
  13. K. Sakoda, Optical Properties of Photonic Crystal, ser. Optical Sciences. (Springer, New York, 2001).
  14. A. Ruhe, “Algorithms for the nonlinear eigenvalue problem,” SIAM J. Numer. Anal. 10(4), 674–689 (1973). [CrossRef]
  15. S. Shi, C. Chen, and D. Prather, “Revised plane wave method for dispersive material and its application to band structure calculation of photonic crystal slabs,” Appl. Phys. Lett. 86(4), 043104 (2005). [CrossRef]
  16. B. P. Hiett, J. M. Generowicz, S. J. Cox, M. Molinari, D. H. Beckett, and K. S. Thomas, “Application of finite element methods to photonic crystal modelling,” IEE Proc. Sci. Meas. Technol. 149(5), 293–296 (2002). [CrossRef]
  17. M. Davanco, Y. Urzhumov, and G. Shvets, “The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction,” Opt. Express 15(15), 9681–9691 (2007). [CrossRef] [PubMed]
  18. C. Fietz, Y. Urzhumov, and G. Shvets, “Complex k band diagrams of 3D metamaterial/photonic crystals,” Opt. Express 19(20), 19027–19041 (2011). [CrossRef] [PubMed]
  19. G. Shvets and Y. A. Urzhumov, “Electric and magnetic properties of sub-wavelength plasmonic crystals,” J. Opt. A, Pure Appl. Opt. 7(2), S23–S31 (2005). [CrossRef]
  20. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (John Wiley & Sons, Inc., 2002).
  21. F. Tisseur and K. Meerbergen, “The quadratic eigenvalue problem,” SIAM Rev. 43(2), 235–286 (2001). [CrossRef]
  22. Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antenn. Propag. 43(12), 1460–1463 (1995). [CrossRef]
  23. S. D. Gedney, “An Anisotropic Perfectly Matched Layer-Absorbing Medium for the truncation of FDTD Lattices,” IEEE Trans. Antenn. Propag. 44(12), 1630–1639 (1996). [CrossRef]
  24. D. Edward, Palik, Handbook of optical constants of solids, (Academic Press, 1985).
  25. G. Steven, Johnson, “Notes on Perfectly Matched Layers (PMLs),” Lecture notes Massachusetts Institute of Technology Massachusetts (2008), 1–16 (2007).
  26. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002). [CrossRef] [PubMed]
  27. M. Imran and G. Andrew, Kirk, “Accurate determination of quality factor of axisymmetric resonators by use of perfectly mathed layer,” arXiv:1101.1984v2 [physics.optics], 1–7(2011).
  28. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996). [CrossRef] [PubMed]
  29. P. Vincent and M. Neviere, “Corrugated dielectric waveguides: A numerical Study of the Second-Order Stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979). [CrossRef]
  30. P. Lalanne, J. P. Hugonin, and P. Chavel, “Optical properties of deep lamellar grating: a coupled Bloch-mode insight,” J. Lightwave Technol. 24(6), 2442–2449 (2006). [CrossRef]
  31. K. C. Huang, E. Lidorikis, X. Jiang, J. D. Joannopoulos, K. A. Nelson, P. Bienstman, and S. Fan, “Nature of lossy Bloch states in polaritonic photonic crystals,” Phys. Rev. B 69(19), 195111 (2004). [CrossRef]
  32. A. Kolomenskii, S. Peng, J. Hembd, A. Kolomenski, J. Noel, J. Strohaber, W. Teizer, and H. Schuessler, “Interaction and spectral gaps of surface plasmon modes in gold nano-structures,” Opt. Express 19(7), 6587–6598 (2011). [CrossRef] [PubMed]
  33. Y. Ding and R. Magnusson, “Band gaps and leaky-wave effects in resonant photonic-crystal waveguides,” Opt. Express 15(2), 680–694 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited