OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 17044–17049

Experimental demonstration of propagating plasmons in metallic nanoshells

Md M. Hossain, Alessandro Antonello, and Min Gu  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 17044-17049 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (957 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we show the experimental demonstration of plasmon propagation in cylindrical metallic nanoshells which is coated, via the electroless silver deposition method, on dielectric nanorods fabricated by using the direct laser writing method. The experimental measurement and the numerical analysis reveal the polarization sensitivity of the plasmon modes within the nanoshells. We further characterize the fundamental properties of these plasmon modes by exploiting their dispersive features and explain the mechanism for the excitation of the plasmon modes by identifying their radiative and nonradiative nature.

© 2012 OSA

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: May 25, 2012
Revised Manuscript: June 26, 2012
Manuscript Accepted: July 5, 2012
Published: July 11, 2012

Md M. Hossain, Alessandro Antonello, and Min Gu, "Experimental demonstration of propagating plasmons in metallic nanoshells," Opt. Express 20, 17044-17049 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  2. E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys.120(11), 5444–5454 (2004). [CrossRef] [PubMed]
  3. C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett.4(7), 1323–1327 (2004). [CrossRef]
  4. A. Moradi, “Plasmon hybridization in metallic nanotubes,” J. Phys. Chem. Solids69(11), 2936–2938 (2008). [CrossRef]
  5. M. D. Turner, M. M. Hossain, and M. Gu, “The effects of retardation on plasmon hybridization within metallic nanostructures,” New J. Phys.12(8), 083062 (2010). [CrossRef]
  6. J. Li, M. M. Hossain, B. Jia, D. Buso, and M. Gu, “Three-dimensional hybrid photonic crystals merged with localized plasmon resonances,” Opt. Express18(5), 4491–4498 (2010). [CrossRef] [PubMed]
  7. M. M. Hossain, M. D. Turner, and M. Gu, “Ultrahigh nonlinear nanoshell plasmonic waveguide with total energy confinement,” Opt. Express19(24), 23800–23808 (2011). [CrossRef] [PubMed]
  8. E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Generation of λ/12 nanowires in chalcogenide glasses,” Nano Lett.11(10), 4218–4221 (2011). [CrossRef] [PubMed]
  9. M. D. Turner, G. E. Schröder-Turk, and M. Gu, “Fabrication and characterization of three-dimensional biomimetic chiral composites,” Opt. Express19(10), 10001–10008 (2011). [CrossRef] [PubMed]
  10. A. Antonello, B. Jia, Z. He, D. Buso, G. Perotto, L. Brigo, G. Brusatin, M. Guglielmi, M. Gu, and A. Martucci, “Optimized electroless silver coating for otical and plasmonic applications,” Plasmonics (Published online: March 18, 2012), DOI: 10.1007/s11468-012-9352-6 [CrossRef]
  11. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett.32(5), 551–553 (2007). [CrossRef] [PubMed]
  12. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, New York, 1983).
  13. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004). [CrossRef]
  14. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express17(13), 10757–10766 (2009). [CrossRef] [PubMed]
  15. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009). [CrossRef] [PubMed]
  16. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009). [CrossRef] [PubMed]
  17. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  18. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited