OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 17093–17106

Improved success rate and stability for phase retrieval by including randomized overrelaxation in the hybrid input output algorithm

Martin Köhl, A. A. Minkevich, and Tilo Baumbach  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 17093-17106 (2012)
http://dx.doi.org/10.1364/OE.20.017093


View Full Text Article

Enhanced HTML    Acrobat PDF (919 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we study the success rate of the reconstruction of objects of finite extent given the magnitude of its Fourier transform and its geometrical shape. We demonstrate that the commonly used combination of the hybrid input output and error reduction algorithm is significantly outperformed by an extension of this algorithm based on randomized overrelaxation. In most cases, this extension tremendously enhances the success rate of reconstructions for a fixed number of iterations as compared to reconstructions solely based on the traditional algorithm. The good scaling properties in terms of computational time and memory requirements of the original algorithm are not influenced by this extension.

© 2012 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(290.3200) Scattering : Inverse scattering
(100.3200) Image processing : Inverse scattering
(110.3200) Imaging systems : Inverse scattering

ToC Category:
Image Processing

History
Original Manuscript: June 18, 2012
Manuscript Accepted: June 25, 2012
Published: July 11, 2012

Citation
Martin Köhl, A. A. Minkevich, and Tilo Baumbach, "Improved success rate and stability for phase retrieval by including randomized overrelaxation in the hybrid input output algorithm," Opt. Express 20, 17093-17106 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-17093


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. v. d. Veen and F. Pfeiffer, “Coherent x-ray scattering,” Phys J..: Condens. Matter16, 5003–5030 (2004). [CrossRef]
  2. R. Millane, “Phase retrieval in crystallography and optics,” J. Opt. Soc. Am. A7, 394–411 (1990). [CrossRef]
  3. U. Pietsch, V. Holy, and T. Baumbach, High-Resolution X-ray Scattering From Thin Films to Lateral Nanostructures (Springer, New York, 2004).
  4. G. N. Afanasiev, Vavilov-Cherenkov and Synchrotron Radiation: Foundations and Applications (Springer, Netherlands, 2004).
  5. I. Robinson and R. Harder, “Coherent x-ray diffraction imaging of strain at the nanoscale,” Nat Mater8, 291–298 (2009). [CrossRef] [PubMed]
  6. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature400, 342–344 (1999). [CrossRef]
  7. M. A. Pfeifer, G. J. Williams, I. A. Vartanyants, R. Harder, and I. K. Robinson, “Three-dimensional mapping of a deformation field inside a nanocrystal,” Nature442, 63–66 (2006). [CrossRef] [PubMed]
  8. A. Biermanns, A. Davydok, H. Paetzelt, A. Diaz, V. Gottschalch, T. H. Metzger, and U. Pietsch, “Individual GaAs nanorods imaged by coherent x-ray diffraction,” J. Synchrotron Radiat.16, 796–802 (2009). [CrossRef] [PubMed]
  9. A. A. Minkevich, M. Gailhanou, J.-S. Micha, B. Charlet, V. Chamard, and O. Thomas, “Inversion of the diffraction pattern from an inhomogeneously strained crystal using an iterative algorithm,” Phys. Rev. B76, 104106 (2007). [CrossRef]
  10. A. A. Minkevich, E. Fohtung, T. Slobodskyy, M. Riotte, D. Grigoriev, T. Metzger, A. C. Irvine, V. Novák, V. Holý, and T. Baumbach, “Strain field in (Ga,Mn)As/GaAs periodic wires revealed by coherent x-ray diffraction,” Europhys. Lett.94, 66001 (2011). [CrossRef]
  11. A. A. Minkevich, E. Fohtung, T. Slobodskyy, M. Riotte, D. Grigoriev, M. Schmidbauer, A. C. Irvine, V. Novák, V. Holý, and T. Baumbach, “Selective coherent x-ray diffractive imaging of displacement fields in (Ga,Mn)As/GaAs periodic wires,” Phys. Rev. B84, 054113 (2011). [CrossRef]
  12. J. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21, 2758–2769 (1982). [CrossRef] [PubMed]
  13. J. Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint,” J. Opt. Soc. Am. A4, 118–123 (1986). [CrossRef]
  14. A. Levi and H. Stark, “Image restoration by the method of generalized projections with application to restoration from magnitude,” J. Opt. Soc. Am. A1, 932–943 (1984). [CrossRef]
  15. D. C. Youla and H. Webb, “Image restoration by the method of convex projections: part 1 – theory,” IEEE Trans. Med. Imaging1, 81 –94 (1982). [CrossRef] [PubMed]
  16. A. A. Minkevich, T. Baumbach, M. Gailhanou, and O. Thomas, “Applicability of an iterative inversion algorithm to the diffraction patterns from inhomogeneously strained crystals,” Phys. Rev. B78, 174110 (2008). [CrossRef]
  17. R. P. Millane, “Multidimensional phase problems,” J. Opt. Soc. Am. A13, 725–734 (1996). [CrossRef]
  18. J. H. Seldin and J. R. Fienup, “Numerical investigation of the uniqueness of phase retrieval,” J. Opt. Soc. Am. A7, 412–427 (1990). [CrossRef]
  19. R. H. T. Bates, “Fourier phase problems are uniquely solvable in more than one dimension,” Optik (Stuttgart)61, 247–262 (1982).
  20. L. Auslander and F. A. Grunbaum, “The Fourier transform and the discrete Fourier transform,” Inverse Prob.5, 149 (1989). [CrossRef]
  21. V. Elser and R. P. Millane, “Reconstruction of an object from its symmetry-averaged diffraction pattern,” Acta Crystallogr., Sect. A: Found. Crystallogr.64, 273–279 (2008). [CrossRef]
  22. J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A15, 1662–1669 (1998). [CrossRef]
  23. J. Fienup and C. Wackermann, “Phase-retrieval stagnation problems and solutions,” J. Opt. Soc. Am. A3 (1986). [CrossRef]
  24. H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval, error reduction algorithm, and fienup variants: a view from convex optimization,” J. Opt. Soc. Am. A19, 1334–1345 (2002). [CrossRef]
  25. H. Takajo, T. Takahashi, R. Ueda, and M. Taninaka, “Study on the convergence property of the hybrid input–output algorithm used for phase retrieval,” J. Opt. Soc. Am. A15, 2849–2861 (1998). [CrossRef]
  26. H. Takajo, T. Takahashi, and T. Shizuma, “Further study on the convergence property of the hybrid input–output algorithm used for phase retrieval,” J. Opt. Soc. Am. A16, 2163–2168 (1999). [CrossRef]
  27. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A20, 40–55 (2003). [CrossRef]
  28. S. Marchesini, “Invited article: A unified evaluation of iterative projection algorithms for phase retrieval,” Rev. Sci. Instrum.78, 011301 (2007). [CrossRef] [PubMed]
  29. S. Marchesini, “Phase retrieval and saddle-point optimization,” J. Opt. Soc. Am. A24, 3289–3296 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited