OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 17136–17144

Electro-colorimetric hydrogen gas sensor based on Pt-functionalized In2O3 nanopushpins and InGaN/GaN multiple quantum wells

T. P. Chen, H. Y. Shih, J. T. Lian, J. H. Chen, P. S. Lin, T. Y. Lin, J. R. Gong, and Y. F. Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 17136-17144 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1238 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel electro-colorimetric gas sensing technique based on the catalytic metal nanoparticles decorated metal oxide nanostructures integrated with multiple quantum wells (MQWs) has been proposed. The working principle has been demonstrated by the sensing device derived from the composite consisting of In0.15Ga0.85N/GaN MQWs and Pt-functionalized In2O3 nanopushpins for the detection of hydrogen gas. The pronounced changes in emission as well as Raman scattering spectra of InGaN/GaN MQWs under different target gas concentrations clearly illustrate the feasibility of our newly designed composites for the derivative of contact-free, simple and highly sensitive gas sensors with optical detection

© 2012 OSA

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(250.5230) Optoelectronics : Photoluminescence

ToC Category:

Original Manuscript: May 22, 2012
Revised Manuscript: June 27, 2012
Manuscript Accepted: July 4, 2012
Published: July 12, 2012

T. P. Chen, H. Y. Shih, J. T. Lian, J. H. Chen, P. S. Lin, T. Y. Lin, J. R. Gong, and Y. F. Chen, "Electro-colorimetric hydrogen gas sensor based on Pt-functionalized In2O3 nanopushpins and InGaN/GaN multiple quantum wells," Opt. Express 20, 17136-17144 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Huang and Q. Wan, “Gas sensors based on semiconducting metal oxide one-dimensional nanostructures,” Sensors (Basel)9(12), 9903–9924 (2009).
  2. K. J. Choi and H. W. Jang, “One-dimensional oxide nanostructures as gas-sensing materials: review and issues,” Sensors (Basel)10(4), 4083–4099 (2010).
  3. A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.)15(12), 997–1000 (2003).
  4. C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).
  5. P. Feng, X. Y. Xue, Y. G. Liu, and T. H. Wang, “Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contact,” Appl. Phys. Lett.89(24), 243514 (2006).
  6. A. Qurashi, T. Yamazaki, E. M. El-Maghraby, and T. Kikuta, “Fabrication and gas sensing properties of In2O3 nanopushpins,” Appl. Phys. Lett.95(15), 153109 (2009).
  7. M. Qazi, G. Koley, S. Park, and T. Vogt, “NO2 detection by adsorption induced work function changes in In2O3 thin films,” Appl. Phys. Lett.91(4), 043113 (2007).
  8. C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett.83(19), 4014–4016 (2003).
  9. J. Xu, N. Wu, C. Jiang, M. Zhao, J. Li, Y. Wei, and S. X. Mao, “Impedance characterization of ZnO nanobelt/Pd Schottky contacts in ammonia,” Small2(12), 1458–1461 (2006).
  10. Q. Liang, H. Xu, J. Zhao, and S. Gao, “Micro humidity sensors based on ZnO–In2O3 thin films with high performances,” Sens. Actuators B Chem.165(1), 76–81 (2012).
  11. T. Hubert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).
  12. B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J. Quantum Electron.48(2), 160–168 (2012).
  13. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
  14. H. Gu, Z. Wang, and Y. Hu, “Hydrogen gas sensors based on semiconductor oxide nanostructures,” Sensors (Basel Switzerland)12(5), 5517–5550 (2012).
  15. M. Qazi, J. Liu, M. V. S. Chandrashekhar, and G. Koley, “Surface electronic property of SiC correlated with NO2 adsorption,” J. Appl. Phys.106(9), 094901 (2009).
  16. Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-xN/GaN quantum wells,” Phys. Rev. B66(3), 035334 (2002).
  17. S. S. Kim, J. Y. Park, S. W. Choi, H. S. Kim, H. G. Na, J. C. Yang, and H. W. Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles,” Nanotechnology21(41), 415502 (2010).
  18. T. Y. Lin, “Converse piezoelectric effect and photoelastic effect in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.82(6), 880–882 (2003).
  19. H. Y. Shih, Y. T. Chen, C. M. Wei, M. H. Chan, J. K. Lian, Y. F. Chen, and T. Y. Lin, “Optical detection of glucose based on a composite consisting of enzymatic ZnO nanorods and InGaN/GaN multiple quantum wells,” J. Phys. Chem. C115(30), 14664–14667 (2011).
  20. C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. J. Yang, and Y. F. Chen, “Efficient light harvesting by well-aligned In2O3 nanopushpins as antireflection layer on Si solar cells,” J. Phys. Chem. C115(26), 13083–13087 (2011).
  21. M. K. Kumar and S. Ramaprabhu, “Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor,” J. Phys. Chem. B110(23), 11291–11298 (2006).
  22. C. F. Klingshirn, Semiconductor Optics (Springer, Berlin, 1995).
  23. D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices,” Nano Lett.4(10), 1919–1924 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited