OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17402–17409

Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors

Mickaël Février, Philippe Gogol, Grégory Barbillon, Abdelhanin Aassime, Robert Mégy, Bernard Bartenlian, Jean-Michel Lourtioz, and Béatrice Dagens  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 17402-17409 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the integration of short metal nanoparticle chains (L ≈700nm) supporting localized surface plasmons in Silicon On Insulator (SOI) waveguides at telecom wavelengths. Nanoparticles are deposited on the waveguide top and excited through the evanescent field of the TE waveguide modes. Finite difference time domain calculations and waveguide transmission measurements reveal that almost all the TE mode energy can be transferred to nanoparticle chains at resonance. It is also shown that the transmission spectrum is very sensitive to the molecular environment of nanoparticles, thus opening the way towards ultra-compact sensors in guided plasmonics on SOI. An experimental demonstration is reported with octadecanthiol molecules for a detection volume as small as 0.26 attoliter.

© 2012 OSA

OCIS Codes
(000.0000) General : General
(000.2700) General : General science

ToC Category:
Optics at Surfaces

Original Manuscript: June 7, 2012
Revised Manuscript: June 28, 2012
Manuscript Accepted: July 2, 2012
Published: July 16, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Mickaël Février, Philippe Gogol, Grégory Barbillon, Abdelhanin Aassime, Robert Mégy, Bernard Bartenlian, Jean-Michel Lourtioz, and Béatrice Dagens, "Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors," Opt. Express 20, 17402-17409 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010). [CrossRef]
  3. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010). [CrossRef]
  4. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009). [CrossRef] [PubMed]
  5. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006). [CrossRef] [PubMed]
  6. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009). [CrossRef]
  7. Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010). [CrossRef]
  8. R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett. 35(5), 649–651 (2010). [CrossRef] [PubMed]
  9. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010). [CrossRef] [PubMed]
  10. S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010). [CrossRef]
  11. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010). [CrossRef]
  12. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012). [CrossRef] [PubMed]
  13. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  14. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998). [CrossRef] [PubMed]
  15. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000). [CrossRef]
  16. A. Femius Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006). [CrossRef]
  17. P. Debackere, R. Baets, and P. Bienstman, “Bulk sensing experiments using a surface-plasmon interferometer,” Opt. Lett. 34(18), 2858–2860 (2009). [CrossRef] [PubMed]
  18. H. M. K. Wong, M. Righini, J. C. Gates, P. G. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99(6), 061107 (2011). [CrossRef]
  19. R. de Waele, A. F. Koenderink, and A. Polman, “Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays,” Nano Lett. 7(7), 2004–2008 (2007). [CrossRef]
  20. D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wetchemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006). [CrossRef]
  21. G. Barbillon, J.-L. Bigeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance,” Surf. Sci. 601(21), 5057–5061 (2007). [CrossRef]
  22. E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009). [CrossRef]
  23. D. Enders, T. Nagao, A. Pucci, T. Nakayama, and M. Aono, “Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold,” Phys. Chem. Chem. Phys. 13(11), 4935–4941 (2011). [CrossRef] [PubMed]
  24. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008). [CrossRef] [PubMed]
  25. D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited