OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17411–17420

Flexible quantum private queries based on quantum key distribution

Fei Gao, Bin Liu, Qiao-Yan Wen, and Hui Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17411-17420 (2012)
http://dx.doi.org/10.1364/OE.20.017411


View Full Text Article

Enhanced HTML    Acrobat PDF (1440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By adding a parameter θ in M. Jakobi et al’s protocol [Phys. Rev. A 83, 022301 (2011)], we present a flexible quantum-key-distribution-based protocol for quantum private queries. We show that, by adjusting the value of θ, the average number of the key bits Alice obtains can be located on any fixed value the users wanted for any database size. And the parameter k is generally smaller (even k = 1 can be achieved) when θ < π/4, which implies lower complexity of both quantum and classical communications. Furthermore, the users can choose a smaller θ to get better database security, or a larger θ to obtain a lower probability with which Bob can correctly guess the address of Alice’s query.

© 2012 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

History
Original Manuscript: June 13, 2012
Revised Manuscript: July 9, 2012
Manuscript Accepted: July 10, 2012
Published: July 16, 2012

Citation
Fei Gao, Bin Liu, Qiao-Yan Wen, and Hui Chen, "Flexible quantum private queries based on quantum key distribution," Opt. Express 20, 17411-17420 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17411


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in 35th Annual Symposium on the Foundations of Computer Science, (Santa Fe, New Mexico, 1994), 124–134. [CrossRef]
  2. L. K. Grover, “A fast quantum mechanical algorithm for database search,” in 28th Annual ACM Symposium on Theory of Computing, (New York, 1996), 212–219.
  3. C.H. Bennett and G. Brassard, “Quantum cryptography: public-key distribution and coin tossing,” in IEEE Int. Conf. on Computers, Systems, and Signal Processing, (Bangalore, 1984), 175–179.
  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
  5. B. Chor, E. Goldreich, O. Kushilevitz, and M. Sudan, “Private Information Retrieval,” J. ACM45, 965–981 (1998). [CrossRef]
  6. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, “Protecting data privacy in private information retrieval schemes,” J. Comput. Syst. Sci.60, 592–629 (2000). [CrossRef]
  7. H. K. Lo, “Insecurity of quantum secure computations,” Phys. Rev. A56, 1154–1162 (1997). [CrossRef]
  8. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum Private Queries,” Phys. Rev. Lett.100, 230502 (2008). [CrossRef] [PubMed]
  9. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum Private Queries: securety analysis,” IEEE T. Inform. Theory56, 3465–3477 (2010). [CrossRef]
  10. F. D. Martini, V. Giovannetti, S. Lloyd, L. Maccone, E. Nagali, L. Sansoni, and F. Sciarrino, “Experimental quantum private queries with linear optics,” Phys. Rev. A80, 010302 (2009). [CrossRef]
  11. L. Olejnik, “Secure quantum private information retrieval using phase-encoded queries,” Phys. Rev. A84, 022313 (2011). [CrossRef]
  12. M. Jakobi, C. Simon, N. Gisin, J.D. Bancal, C. Branciard, N. Walenta, and H. Zbinden, “Practical private database queries based on a quantum-key-distribution protocol,” Phys. Rev. A83, 022301 (2011). [CrossRef]
  13. V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett.92, 057901 (2004). [CrossRef] [PubMed]
  14. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett.68, 3121–3124 (1992). [CrossRef] [PubMed]
  15. P. Raynal, “Unambiguous State Discrimination of two density matrices in Quantum Information Theory,” e-print arXiv:quant-ph/0611133.
  16. U. Herzog and J. A. Bergou, “Optimum unambiguous discrimination of two mixed quantum states,” Phys. Rev. A71, 050301 (2005). [CrossRef]
  17. C. A. Fuchs, “Distinguishability and Accessible Information in Quantum Theory,” e-print arXiv:quant-ph/9601020.
  18. C. W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited