OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17448–17455

Localized surface plasmon resonance with broadband ultralow reflectivity from metal nanoparticles on glass and silicon subwavelength structures

Chee Leong Tan, Sung Jun Jang, and Yong Tak Lee  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17448-17455 (2012)
http://dx.doi.org/10.1364/OE.20.017448


View Full Text Article

Enhanced HTML    Acrobat PDF (1646 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metal nanoparticles (NPs) are well known to increase the efficiency of photovoltaic devices by reducing reflection and increasing light trapping within device. However, metal NPs on top flat surface suffer from high reflectivity losses due to the backscattering of the NPs itself. In this paper, we experimentally demonstrate a novel structure that exhibits localized surface plasmon resonance (LSPR) along with broadband ultralow reflectivity over a wide range of wavelength. Experimental results show that by depositing Ag NPs and Au NPs onto glass subwavelength structures (SWS) the backscattering effect of NPs can be suppressed, and the reflections can be considerably reduced by up to 87.5% and 66.7% respectively, compared to NPs fabricated on a flat glass substrate. Broadband ultralow reflection (< 2%) is also observed in the case of Ag NPs and Au NPs fabricated on cone shaped SWS silicon substrate over a wavelength range from 200 nm to 800 nm. This broadband ultralow reflectivity of Ag NPs and Au NPs on silicon SWS structure leads to a substantial enhancement of average absorption by 66.53% and 66.94%, respectively, over a broad wavelength range (200-2000 nm). This allows light absorption by NPs on SWS silicon structure close to 100% over a wavelength range from 300 nm to 1000 nm. The mechanism responsible for the increased light absorption is also explained.

© 2012 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(310.1210) Thin films : Antireflection coatings

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 22, 2012
Revised Manuscript: July 6, 2012
Manuscript Accepted: July 9, 2012
Published: July 17, 2012

Citation
Chee Leong Tan, Sung Jun Jang, and Yong Tak Lee, "Localized surface plasmon resonance with broadband ultralow reflectivity from metal nanoparticles on glass and silicon subwavelength structures," Opt. Express 20, 17448-17455 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17448


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  2. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  3. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009). [CrossRef]
  4. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  5. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005). [CrossRef]
  6. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  7. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  8. K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull.36(06), 461–467 (2011). [CrossRef]
  9. E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. X. Royer, and H. Stiebig, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” J. Non-Cryst. Solids354(19-25), 2488–2491 (2008). [CrossRef]
  10. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010). [CrossRef] [PubMed]
  11. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006). [CrossRef] [PubMed]
  12. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology8(2), 53–56 (1997). [CrossRef]
  13. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007). [CrossRef] [PubMed]
  14. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett120702151353008 (2012), doi:. [CrossRef] [PubMed]
  15. C. M. Müller, F. C. F. Mornaghini, and R. Spolenak, “Ordered arrays of faceted gold nanoparticles obtained by dewetting and nanosphere lithography,” Nanotechnology19(48), 485306 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited