OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17456–17466

Polarization spectroscopy and magnetically-induced dichroism of the potassium D2 lines

K. Pahwa, L. Mudarikwa, and J. Goldwin  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 17456-17466 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study modulation-free methods for producing sub-Doppler, dispersive line shapes for laser stabilization near the potassium D2 transitions at 767 nm. Polarization spectroscopy is performed and a comparison is made between the use of a mirror or beam splitter for aligning the counter-propagating pump and probe beams. Conventional magnetically-induced dichroism is found to suffer from a small dispersion and large background offset. We therefore introduce a modified scheme, using two spatially separated pump-probe beam pairs. Finally we compare our results to methods using phase modulation and heterodyne detection.

© 2012 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Atomic and Molecular Physics

Original Manuscript: May 3, 2012
Revised Manuscript: May 21, 2012
Manuscript Accepted: May 21, 2012
Published: July 17, 2012

K. Pahwa, L. Mudarikwa, and J. Goldwin, "Polarization spectroscopy and magnetically-induced dichroism of the potassium D2 lines," Opt. Express 20, 17456-17466 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Hänsch, M. D. Levenson, A. L. Schawlow, and G. Assanto, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett.26, 946–949 (1971). [CrossRef]
  2. P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University Press, Princeton, 2011).
  3. T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun.92, 277–282 (1992). [CrossRef]
  4. C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett.36, 1170–1173 (1976). [CrossRef]
  5. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002). [CrossRef]
  6. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt.37, 3295–3298 (1998). [CrossRef]
  7. U. Shim, J.-A. Kim, and W. Jhe, “Saturated absorption spectroscopy in the presence of a longitudinal magnetic field,” J. Kor. Phys. Soc.35, 222–225 (1999).
  8. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B75, 613–619 (2002). [CrossRef]
  9. T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003). [CrossRef]
  10. N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett.27, 1905–1907 (2002). [CrossRef]
  11. F. Wei, D. Chen, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer,” Opt. Lett.35, 3853–3855 (2010). [CrossRef] [PubMed]
  12. L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-Doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B45, 065002 (2012). [CrossRef]
  13. M. Pichler and D. C. Hall, “Simple laser frequency locking based on Doppler-free magnetically induced dichroism,” Opt. Commun.285, 50–53 (2012). [CrossRef]
  14. M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B41, 085401 (2008). [CrossRef]
  15. H. Wang, P. L Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. I. The 0g− pure long-range state and the long-range potential constants,” J. Chem. Phys.106, 7899–7912 (1997). [CrossRef]
  16. D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys.72, 631–637 (2004). [CrossRef]
  17. S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A74, 032503 (2006). [CrossRef]
  18. P. G. Pappas, M. M. Burns, D. D. Hinshelwood, and M. S. Feld, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A21, 1955–1968 (1980). [CrossRef]
  19. B. E. Sherlock and I. G. Hughes, “How weak is a weak probe in laser spectroscopy?” Am. J. Phys.77, 111–115 (2009). [CrossRef]
  20. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, New York, 1999). [CrossRef]
  21. V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun.263, 249–255 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited