OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17503–17508

Design of highly absorbing metamaterials for Infrared frequencies

Govind Dayal and S. Anantha Ramakrishna  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17503-17508 (2012)
http://dx.doi.org/10.1364/OE.20.017503


View Full Text Article

Enhanced HTML    Acrobat PDF (1423 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Simple designs for polarization independent, metamaterial absorbers at mid-infrared wavelengths and over wide angle of incidence are evaluated computationally. One design consists of an array of circular metallic disks separated from a continuous metallic film by a dielectric film, and shows over 99.9% peak absorbance and a resonant bandwidth of about 0.2 μm wavelengths. The effects of various geometric parameters are analyzed for this metamaterial. Another design consisting of an array of stacked metal-dielectric-metal disks is shown to have an absorbance of over 90% in a comparatively large band of over 1 μm bandwidth, although with a lower peak absorbance of 97%.

© 2012 OSA

OCIS Codes
(260.3060) Physical optics : Infrared
(260.5740) Physical optics : Resonance
(350.2460) Other areas of optics : Filters, interference
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: April 5, 2012
Manuscript Accepted: June 10, 2012
Published: July 18, 2012

Citation
Govind Dayal and S. Anantha Ramakrishna, "Design of highly absorbing metamaterials for Infrared frequencies," Opt. Express 20, 17503-17508 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17503


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, Boca Raton, 2008). [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996). [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10, 4785–4809 (1999). [CrossRef]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008). [CrossRef] [PubMed]
  5. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express16, 7181–7188 (2008). [CrossRef] [PubMed]
  6. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403,(2010). [CrossRef] [PubMed]
  7. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010). [CrossRef]
  8. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010). [CrossRef] [PubMed]
  9. T. Maier and H. Brueckl, “Multispectral microbolometers for the mid infra-red,” Opt. Lett.35, 3766–3768 (2010). [CrossRef] [PubMed]
  10. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14, 024005 (2012). [CrossRef]
  11. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6, 2550–2557 (2012). [CrossRef] [PubMed]
  12. H. T. Chen, J. Zhou, J. F. OHara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett.105, 073901 (2010). [CrossRef] [PubMed]
  13. J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett.109, 074510 (2011).
  14. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005). [CrossRef] [PubMed]
  15. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express14, 7872–7877 (2006). [CrossRef] [PubMed]
  16. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure Appl. Opt.7, S32–S37 (2005). [CrossRef]
  17. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far-infrared,” Appl. Opt.22, 1099–1119 (1983). [CrossRef] [PubMed]
  18. G. Hawkins and R. Hunneman, “The temperature-dependent spectral properties of filter substrate materials in the far-infrared (640 μm),” Infrared Phys Techn45, 69–79 (2004). [CrossRef]
  19. COMSOL Multiphysics RF Module 3.5a User’s Guide.
  20. Y. Zeng, H. T. Chen, and D. A. R. Dalvit, “A reinterpretation of the metamaterial perfect absorber,” arXiv:1201.5109v1, (2012).
  21. S. OBrien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys.: Condens. Matter14, 6383–6394 (2002). [CrossRef]
  22. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “Supporting Information for High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, (2010). [CrossRef]
  23. R. Qiang, R. L. Chen, and J. Chen, “Modeling Electrical Properties of Gold Films at Infrared Frequency Using FDTD Method,” Int. J. Infra Milli25, 1263–1270 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited