OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17581–17590

Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials

Xiqun Lu, Jinhui Shi, Ran Liu, and Chunying Guan  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17581-17590 (2012)
http://dx.doi.org/10.1364/OE.20.017581


View Full Text Article

Enhanced HTML    Acrobat PDF (6038 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose, design and experimentally demonstrate highly-dispersive electromagnetically induced transparency (EIT) in planar symmetric metamaterials actively switched and controlled by angles of incidence. Full-wave simulation and measurement results show EIT phenomena, trapped-mode excitations and the associated local field enhancement of two symmetric metamaterials consisting of symmetrically split rings (SSR) and a fishscale (FS) metamaterial pattern, respectively, strongly depend on angles of incidence. The FS metamaterial shows much broader spectral splitting than the SSR metamaterial due to the surface current distribution variation.

© 2012 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: May 23, 2012
Revised Manuscript: July 10, 2012
Manuscript Accepted: July 10, 2012
Published: July 18, 2012

Citation
Xiqun Lu, Jinhui Shi, Ran Liu, and Chunying Guan, "Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials," Opt. Express 20, 17581-17590 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17581


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys.77(2), 633–673 (2005). [CrossRef]
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  3. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40(5), 2494–2507 (2011). [CrossRef] [PubMed]
  4. N. I. Zheludev, “Applied physics: the road ahead for metamaterials,” Science328(5978), 582–583 (2010). [CrossRef] [PubMed]
  5. N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photon. News20(10), 22–27 (2009). [CrossRef]
  6. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  7. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007). [CrossRef] [PubMed]
  8. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008). [CrossRef] [PubMed]
  9. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008). [CrossRef] [PubMed]
  10. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009). [CrossRef] [PubMed]
  11. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B79(8), 085111 (2009). [CrossRef]
  12. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009). [CrossRef] [PubMed]
  13. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  14. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express17(7), 5595–5605 (2009). [CrossRef] [PubMed]
  15. C. Kurter, P. Tassin, L. Zhang, Th. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetic induced transparency with a metal/superconductor hybrid metamaterial,” Phys. Rev. Lett.107, 043901 (2011).
  16. Y. Lu, X. Jin, H. Zheng, Y. P. Lee, J. Y. Rhee, and W. H. Jang, “Plasmonic electromagnetically-induced transparency in symmetric structures,” Opt. Express18(13), 13396–13401 (2010). [CrossRef] [PubMed]
  17. Y. H. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express18(20), 20912–20917 (2010). [CrossRef] [PubMed]
  18. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express18(16), 17187–17192 (2010). [CrossRef] [PubMed]
  19. Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett.97(11), 114101 (2010). [CrossRef]
  20. Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express18(17), 18229–18234 (2010). [CrossRef] [PubMed]
  21. J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express19(7), 5970–5978 (2011). [CrossRef] [PubMed]
  22. X. R. Jin, J. W. Park, H. Y. Zheng, S. J. Lee, Y. P. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express19(22), 21652–21657 (2011). [CrossRef] [PubMed]
  23. C. K. Chen, Y. C. Lai, Y. H. Yang, C. Y. Chen, and T. J. Yen, “Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials,” Opt. Express20(7), 6952–6960 (2012). [CrossRef] [PubMed]
  24. Z. G. Dong, P. G. Ni, J. Zhu, and X. Zhang, “Transparency window for the absorptive dipole resonance in a symmetry-reduced grating structure,” Opt. Express20(7), 7206–7211 (2012). [CrossRef] [PubMed]
  25. X. J. Liu, J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100(13), 131101 (2012). [CrossRef]
  26. Y. Tamayama, T. Nakanishi, and M. Kitano, “Variable group delay in a metamaterial with field-gradient-induced transparency,” Phys. Rev. B85(7), 073102 (2012). [CrossRef]
  27. V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express18(9), 9015–9019 (2010). [CrossRef] [PubMed]
  28. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009). [CrossRef]
  29. C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express17(17), 15372–15380 (2009). [CrossRef] [PubMed]
  30. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express19(9), 8912–8919 (2011). [CrossRef] [PubMed]
  31. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express17(10), 8548–8551 (2009). [CrossRef] [PubMed]
  32. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010). [CrossRef] [PubMed]
  33. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(5), 056613 (2005). [CrossRef] [PubMed]
  34. V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett.88(9), 091119 (2006). [CrossRef]
  35. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80(19), 195415 (2009). [CrossRef]
  36. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4521–4525 (2008). [CrossRef]
  37. C. Rockstuhl, F. Lederer, C. Etrich, Th. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14(19), 8827–8836 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited