OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17591–17599

Are scaling laws of sub-optical wavelength electric field confinement in arrays of metal nanoparticles related to plasmonics or to geometry?

M. Essone Mezeme and C. Brosseau  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17591-17599 (2012)
http://dx.doi.org/10.1364/OE.20.017591


View Full Text Article

Acrobat PDF (817 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we describe finite element simulations of the plasmonic resonance (PLR) properties of a self-similar chain of plasmonic nanostructures. Using a broad range of conditions, we find strong numerical evidence that the electric field confinement behaves as (Ξ/λ)PLR∝EFE, where EFE is the electric field enhancement, Ξis the linear size of the focusing length, and λ is the wavelength of the resonant excitation. We find that the exponent γ is close to 1, i.e. significantly lower than the 1.5 found for two-dimensional nanodisks. This scaling law provides support for the hypothesis of a universal regime in which the sub-optical wavelength electric field confinement is controlled by the Euclidean dimensionality and is independent of nanoparticle size, metal nature, or embedding medium permittivity.

© 2012 OSA

OCIS Codes
(160.1245) Materials : Artificially engineered materials
(260.2065) Physical optics : Effective medium theory
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Metamaterials

History
Original Manuscript: May 25, 2012
Revised Manuscript: July 12, 2012
Manuscript Accepted: July 15, 2012
Published: July 18, 2012

Citation
M. Essone Mezeme and C. Brosseau, "Are scaling laws of sub-optical wavelength electric field confinement in arrays of metal nanoparticles related to plasmonics or to geometry?," Opt. Express 20, 17591-17599 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17591


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).
  2. P. Meakin, Fractals, Scaling, and Growth Far from Equilibrium (Cambridge University Press, 1998).
  3. A. Maier, Plasmonics: Fundamental and Applications (Springer, 2007).
  4. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010). [CrossRef] [PubMed]
  5. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett.87(16), 167401 (2001). [CrossRef] [PubMed]
  6. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003). [CrossRef] [PubMed]
  7. Z. Li, Z. Yang, and H. Xu, “Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006). [CrossRef] [PubMed]
  8. M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Subwavelength control of electromagnetic field confinement in self-similar chains of magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026612 (2011). [CrossRef] [PubMed]
  9. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  10. C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009). [CrossRef] [PubMed]
  11. A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, “High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers,” J. Opt. Soc. Am. B21(1), 121–131 (2004). [CrossRef]
  12. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997). [CrossRef] [PubMed]
  13. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004). [CrossRef]
  14. V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep.272(2-3), 61–137 (1996). [CrossRef]
  15. Properties of Nanostructured Random Media, V. M. Shalaev, ed. (Springer, 2002).
  16. J. Borneman, K.-P. Chen, A. Kildishev, and V. Shalaev, “Simplified model for periodic nanoantennae: linear model and inverse design,” Opt. Express17(14), 11607–11617 (2009). [CrossRef] [PubMed]
  17. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76(24), 245403 (2007). [CrossRef]
  18. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998). [CrossRef] [PubMed]
  19. F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112(46), 17983–17987 (2008). [CrossRef]
  20. G. W. Hanson, R. C. Monreal, and S. P. Apell, “Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles,” J. Appl. Phys.109(12), 124306 (2011). [CrossRef]
  21. COMSOL Multiphysics User’s Guide, version 3.4; Comsol Inc. (2006).
  22. M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Long-wavelength electromagnetic propagation in magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057602 (2010). [CrossRef] [PubMed]
  23. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997). [CrossRef] [PubMed]
  24. S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc.130(9), 2750–2751 (2008). [CrossRef] [PubMed]
  25. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011). [CrossRef] [PubMed]
  26. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004). [CrossRef]
  27. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009). [CrossRef]
  28. B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010). [CrossRef] [PubMed]
  29. V. Poponin and A. Ignatov, “Local field enhancement in star-like sets of plasmon nanoparticles,” J. Korean Phys. Soc.47, S222–S228 (2005).
  30. S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express15(7), 4253–4267 (2007). [CrossRef] [PubMed]
  31. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983). [CrossRef] [PubMed]
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  33. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  34. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004). [CrossRef] [PubMed]
  35. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett.26(14), 1096–1098 (2001). [CrossRef] [PubMed]
  36. H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B72(7), 073405 (2005). [CrossRef]
  37. C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004). [CrossRef]
  38. S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B73(3), 035403 (2006). [CrossRef]
  39. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007). [CrossRef]
  40. P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells,” Nano Lett.7(9), 2854–2858 (2007). [CrossRef] [PubMed]
  41. P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C111, 17451–17454 (2007). [CrossRef]
  42. J. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express8(12), 655–663 (2001). [CrossRef] [PubMed]
  43. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004). [CrossRef] [PubMed]
  44. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011). [CrossRef] [PubMed]
  45. J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008). [CrossRef]
  46. G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009). [CrossRef]
  47. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008). [CrossRef] [PubMed]
  48. J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008). [CrossRef] [PubMed]
  49. V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010). [CrossRef] [PubMed]
  50. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005). [CrossRef]
  51. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007). [CrossRef]
  52. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008). [CrossRef]
  53. V. Castel and C. Brosseau, “Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal-oxides,” Phys. Rev. B77(13), 134424 (2008). [CrossRef]
  54. V. Castel and C. Brosseau, “Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy,” Appl. Phys. Lett.92(23), 233110 (2008). [CrossRef]
  55. B. M. Ross and L. P. Lee, “Plasmon tuning and local field enhancement maximization of the nanocrescent,” Nanotechnology19(27), 275201 (2008). [CrossRef] [PubMed]
  56. K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008). [CrossRef] [PubMed]
  57. H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys.9(3), 53–70 (2007). [CrossRef]
  58. J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2131–2134 (2005). [CrossRef]
  59. J. Kim, G. Liu, Y. Lu, and L. Lee, “Intra-particle plasmonic coupling of tip and cavity resonance modes in metallic apertured nanocavities,” Opt. Express13(21), 8332–8338 (2005). [CrossRef] [PubMed]
  60. L. Yang, X. Luo, and M. Hong, “Self-similar chain of nanocrescents as a surface-enhanced Raman scattering substrate,” J. Comput. Theor. Nanosci.7(8), 1364–1367 (2010). [CrossRef]
  61. Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited