OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17667–17677

Photonic wire bonding: a novel concept for chip-scale interconnects

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 17667-17677 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1657 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic integration requires a versatile packaging technology that enables low-loss interconnects between photonic chips in three-dimensional configurations. In this paper we introduce the concept of photonic wire bonding, where polymer waveguides with three-dimensional freeform geometries are used to bridge the gap between nanophotonic circuits located on different chips. In a proof-of-principle experiment, we demonstrate the fabrication of single-mode photonic wire bonds (PWB) by direct-write two-photon lithography. First-generation prototypes allow for efficient broadband coupling with average insertion losses of only 1.6 dB in the C-band and can carry wavelength-division multiplexing signals with multi-Tbit/s data rates. Photonic wire bonding is well suited for automated mass production, and we expect the technology to enable optical multi-chip systems with enhanced performance and flexibility.

© 2012 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(220.4241) Optical design and fabrication : Nanostructure fabrication
(130.6622) Integrated optics : Subsystem integration and techniques

ToC Category:
Integrated Optics

Original Manuscript: May 8, 2012
Revised Manuscript: July 13, 2012
Manuscript Accepted: July 17, 2012
Published: July 19, 2012

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, "Photonic wire bonding: a novel concept for chip-scale interconnects," Opt. Express 20, 17667-17677 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Evans, M. Fisher, R. Malendevich, A. James, P. Studenkov, G. Goldfarb, T. Vallaitis, M. Kato, P. Samra, S. Corzine, E. Strzelecka, R. Salvatore, F. Sedgwick, M. Kuntz, V. Lal, D. Lambert, A. Dentai, D. Pavinski, B. Behnia, J. Bostak, V. Dominic, A. Nilsson, B. Taylor, J. Rahn, S. Sanders, H. Sun, K.-T. Wu, J. Pleumeekers, R. Muthiah, M. Missey, R. Schneider, J. Stewart, M. Reffle, T. Butrie, R. Nagarajan, C. Joyner, M. Ziari, F. Kish, and D. Welch, “Multi-channel coherent PM-QPSK InP transmitter photonic integrated circuit (PIC) operating at 112 Gb/s per wavelength,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPC7.
  2. D. Feng, W. Qian, H. Liang, N.-N. Feng, S. Liao, C.-C. Kung, J. Fong, Y. Liu, R. Shafiiha, D. C. Lee, B. J. Luff, and M. Asghari, “Terabit/s single chip WDM receiver on the SOI platform,” in Proceedings of IEEE International Conference on Group IV Photonics, (IEEE, 2011), 320–322.
  3. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proceedings of the IEEE, (IEEE 97), 1166–1185.
  4. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002). [CrossRef]
  5. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007). [CrossRef]
  6. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express18(17), 18278–18283 (2010). [CrossRef] [PubMed]
  7. X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett.22(15), 1156–1158 (2010). [CrossRef]
  8. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. D. L. Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett.15(9), 1249–1251 (2003). [CrossRef]
  9. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro26(2), 58–66 (2006). [CrossRef]
  10. S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15(15), 9625–9630 (2007). [CrossRef] [PubMed]
  11. Y. Tang, Z. Wang, L. Wosinski, U. Westergren, and S. He, “Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits,” Opt. Lett.35(8), 1290–1292 (2010). [CrossRef] [PubMed]
  12. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45(8A), 6071–6077 (2006). [CrossRef]
  13. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  14. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3µm square Si wire waveguides to singlemode fibres,” Electron. Lett.38(25), 1669–1670 (2002). [CrossRef]
  15. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003). [CrossRef] [PubMed]
  16. L. C. L. Chen, C. R. Doerr, Y.-K. C. Y.-K. Chen, and T.-Y. L. T.-Y. Liow, “Low-Loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22(23), 1744–1746 (2010). [CrossRef]
  17. F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.29(4), 475–482 (2011). [CrossRef]
  18. N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds - a novel concept for chip-to-chip interconnects,” in Optical Fiber Communications Conference (Optical Society of America, 2011), paper PDPC1.
  19. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997). [CrossRef] [PubMed]
  20. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001). [CrossRef] [PubMed]
  21. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004). [CrossRef] [PubMed]
  22. G. Schmid, W. R. Leeb, G. Langer, V. Schmidt, and R. Houbertz, “Gbit/s transmission via two-photon-absorption-inscribed optical waveguides on printed circuit boards,” Electron. Lett.45(4), 219–221 (2009). [CrossRef]
  23. N. Lindenmann, G. Balthasar, R. Palmer, S. Schuele, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding for single-mode chip-to-chip interconnects,” in Proceedings of IEEE International Conference on Group IV Photonics, (IEEE, 2011), 380–382.
  24. N. Lindenmann, G. Balthasar, M. Jordan, D. Hillerkuss, R. Schmogrow, W. Freude, J. Leuthold, and C. Koos, “Low loss photonic wire bond interconnects enabling 5 TBit/s data transmission,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW4I.4.
  25. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. van Campenhout, P. Bienstman, and D. van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.23(1), 401–412 (2005). [CrossRef]
  26. H. Nanoscribe Gmb, www.nanoscribe.de .
  27. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics5(6), 364–371 (2011). [CrossRef]
  28. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012). [CrossRef]
  29. R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics”, in Proceedings of International Conference on Electrical and Computer Engineering (2006), pp. 408–411.
  30. R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for coherent optical communications,” in CLEO (2012) paper CTh1H.2 (invited).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited