OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17678–17683

Tuning of a nonlinear THz emitter

A. Andronico, S. Mariani, F. Ghiglieno, J. Claudon, M. Munsch, J. M. Gérard, I. Favero, S. Ducci, and G. Leo  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17678-17683 (2012)
http://dx.doi.org/10.1364/OE.20.017678


View Full Text Article

Enhanced HTML    Acrobat PDF (778 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically study a passive THz source based on difference frequency generation between modes sustained by cylindrical AlGaAs microcavities. We show that ring-like structures are advantageous in that they provide additional degrees of freedom for tuning the nonlinear process and for maximizing the nonlinear overlap integral and conversion efficiency.

© 2012 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 3, 2012
Revised Manuscript: June 1, 2012
Manuscript Accepted: June 8, 2012
Published: July 19, 2012

Citation
A. Andronico, S. Mariani, F. Ghiglieno, J. Claudon, M. Munsch, J. M. Gérard, I. Favero, S. Ducci, and G. Leo, "Tuning of a nonlinear THz emitter," Opt. Express 20, 17678-17683 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17678


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon.1, 97–105 (2007). [CrossRef]
  2. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett.66, 285–287 (1995). [CrossRef]
  3. R. Köhler, A. Tredicucci, F. Beltram, H. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002). [CrossRef] [PubMed]
  4. M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature tera-hertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett.92, 201101 (2008). [CrossRef]
  5. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.99, 131106 (2011). [CrossRef]
  6. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express15, 16161–16176 (2007). [CrossRef] [PubMed]
  7. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett.90, 051108 (2007). [CrossRef]
  8. L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett.105, 263903 (2010). [CrossRef]
  9. A. Andronico, J. Claudon, J.-M. Gérard, V. Berger, and G. Leo, “Integrated terahertz source based on three-wave mixing of whispering-gallery modes,” Opt. Lett.33, 2416–2418 (2008). [CrossRef] [PubMed]
  10. J. Bravo-Abad, A. W. Rodriguez, J. D. Joannopoulos, P. T. Rakich, S. G. Johnson, and M. Soljačić, “Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing,” Appl. Phys. Lett.96, 101110 (2010). [CrossRef]
  11. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at λ ≈ 100μm using metal waveguide for mode confinement,” Appl. Phys. Lett.83, 2124–2126 (2003). [CrossRef]
  12. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  13. R. D. Kekatpure, “First-principles full-vectorial eigenfrequency computations for axially symmetric resonators,” J. Lightwave Technol.29, 253–259 (2011). [CrossRef]
  14. F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett.97, 101108 (2010). [CrossRef]
  15. M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100, 031111 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited