OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17928–17937

Asynchronous optical sampling with arbitrary detuning between laser repetition rates

Laura Antonucci, Xavier Solinas, Adeline Bonvalet, and Manuel Joffre  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 17928-17937 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1150 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method of asynchronous optical sampling based on free-running lasers with no requirement on the repetition rates is presented. The method is based on the a posteriori determination of the delay between each pair of pulses. A resolution better than 400 fs over 13 ns total delay scan is demonstrated. In addition to the advantages of conventional asynchronous sampling techniques, this method allows a straightforward implementation on already-existing laser systems using a fiber-based setup and an appropriate acquisition procedure.

© 2012 OSA

OCIS Codes
(320.7100) Ultrafast optics : Ultrafast measurements
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Ultrafast Optics

Original Manuscript: June 12, 2012
Revised Manuscript: July 17, 2012
Manuscript Accepted: July 17, 2012
Published: July 20, 2012

Laura Antonucci, Xavier Solinas, Adeline Bonvalet, and Manuel Joffre, "Asynchronous optical sampling with arbitrary detuning between laser repetition rates," Opt. Express 20, 17928-17937 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electr.2, 605–621 (1996). [CrossRef]
  2. M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett.13, 178–180 (1968). [CrossRef]
  3. E. Lill, S. Schneider, and F. Dorr, “Rapid optical sampling of relaxation-phenomena employing 2 time-correlated picosecond pulsetrains,” Appl. Phys.14, 399–401 (1977). [CrossRef]
  4. P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump probe method for fast analysis of visible spectral signatures utilizing asynchronous optical-sampling,” Appl. Opt.26, 4303–4309 (1987). [CrossRef] [PubMed]
  5. P. A. Elzinga, F. E. Lytle, Y. Jian, G. B. King, and N. M. Laurendeau, “Pump probe spectroscopy by asynchronous optical-sampling,” Appl. Spectrosc.41, 2–4 (1987). [CrossRef]
  6. J. D. Kafka, J. W. Pieterse, and M. L. Watts, “2-color subpicosecond optical-sampling technique,” Opt. Lett.17, 1286–1288 (1992). [CrossRef] [PubMed]
  7. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett.29, 1542–1544 (2004). [CrossRef] [PubMed]
  8. D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998). [CrossRef]
  9. Y. Takagi and S. Adachi, “Subpicosecond optical sampling spectrometer using asynchronous tunable mode-locked lasers,” Rev. Sci. Instr.70, 2218–2224 (1999). [CrossRef]
  10. A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Kohler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett.88, 041117 (2006). [CrossRef]
  11. F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J. R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B79, 201307 (2009). [CrossRef]
  12. R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50fs time resolution,” Opt. Express18, 5974–5983 (2010). [CrossRef] [PubMed]
  13. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express13, 9029–9038 (2005). [CrossRef] [PubMed]
  14. T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett.87, 061101 (2005). [CrossRef]
  15. C. Janke, M. Forst, M. Nagel, H. Kurz, and A. Bartels, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett.30, 1405–1407 (2005). [CrossRef] [PubMed]
  16. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006). [CrossRef]
  17. A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express14, 430–437 (2006). [CrossRef] [PubMed]
  18. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett.27, 766–768 (2002). [CrossRef]
  19. C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Phot. Techn. Lett.15, 1746–1748 (2003). [CrossRef]
  20. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008). [CrossRef] [PubMed]
  21. S. Kray, F. Spoler, M. Forst, and H. Kurz, “Dual femtosecond laser multiheterodyne optical coherence tomography,” Opt. Lett.33, 2092–2094 (2008). [CrossRef] [PubMed]
  22. J. D. Deschenes, P. Giaccari, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express18, 23358–23370 (2010). [CrossRef] [PubMed]
  23. I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett.35, 1395–1397 (2010). [CrossRef] [PubMed]
  24. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4, 55–57 (2010). [CrossRef]
  25. J. Bredenbeck, J. Helbing, and P. Hamm, “Continuous scanning from picoseconds to microseconds in time resolved linear and nonlinear spectroscopy,” Rev. Sci. Instr.75, 4462–4466 (2004). [CrossRef]
  26. A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instr.76, 114301 (2005). [CrossRef]
  27. J. Davila-rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave Technol.29, 3091–3098 (2011). [CrossRef]
  28. L. Noirie, F. Cérou, G. Moustakides, O. Audouin, and P. Peloso, “New transparent optical monitoring of the eye and ber using asynchronous under-sampling of the signal,” Proc. Eur. Conf. Optical Communication, PD2.2 (2002).
  29. M. Westlund, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Software-synchronized all-optical sampling for fiber communication systems,” J. Lightwave Technol.23, 1088–1099 (2005). [CrossRef]
  30. T. Mori and A. Otani, “A Simple Synchronization Method for Optical Sampling Eye Monitor,” Jpn. J. Appl. Phys.49, 070208 (2010). [CrossRef]
  31. K. Dou, A. Débarre, J.-L. Le Gouët, I. Lorgeré, and P. Tchénio, “Field cross correlator for analysis of ultrafast signals,” Appl. Opt.33, 7980–7986 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (3585 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited