OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17938–17951

Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography

Meena Siddiqui and Benjamin J. Vakoc  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17938-17951 (2012)
http://dx.doi.org/10.1364/OE.20.017938


View Full Text Article

Enhanced HTML    Acrobat PDF (1829 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent advances in optical coherence tomography (OCT) have led to higher-speed sources that support imaging over longer depth ranges. Limitations in the bandwidth of state-of-the-art acquisition electronics, however, prevent adoption of these advances into the clinical applications. Here, we introduce optical-domain subsampling as a method for imaging at high-speeds and over extended depth ranges but with a lower acquisition bandwidth than that required using conventional approaches. Optically subsampled laser sources utilize a discrete set of wavelengths to alias fringe signals along an extended depth range into a bandwidth limited frequency window. By detecting the complex fringe signals and under the assumption of a depth-constrained signal, optical-domain subsampling enables recovery of the depth-resolved scattering signal without overlapping artifacts from this bandwidth-limited window. We highlight key principles behind optical-domain subsampled imaging, and demonstrate this principle experimentally using a polygon-filter based swept-source laser that includes an intra-cavity Fabry-Perot (FP) etalon.

© 2012 OSA

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 19, 2012
Revised Manuscript: June 5, 2012
Manuscript Accepted: June 7, 2012
Published: July 23, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Meena Siddiqui and Benjamin J. Vakoc, "Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography," Opt. Express 20, 17938-17951 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17938


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003). [CrossRef] [PubMed]
  2. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  3. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003). [CrossRef] [PubMed]
  4. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett.30(23), 3159–3161 (2005). [CrossRef] [PubMed]
  5. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010). [CrossRef] [PubMed]
  6. V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with >100nm tuning range,” in Lasers and Electro-Optics (CLEO), (Optical Society of America, 2011), pp. 1–2.
  7. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 G Voxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  8. T.-H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express17(23), 21257–21270 (2009). [CrossRef] [PubMed]
  9. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008). [CrossRef] [PubMed]
  10. E. J. Jung, J.-S. Park, M. Y. Jeong, C.-S. Kim, T. J. Eom, B.-A. Yu, S. Gee, J. Lee, and M. K. Kim, “Spectrally-sampled OCT for sensitivity improvement from limited optical power,” Opt. Express16(22), 17457–17467 (2008). [CrossRef] [PubMed]
  11. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008). [CrossRef] [PubMed]
  12. B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency, Äìdomain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007). [CrossRef] [PubMed]
  13. R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process.39, 1973–1984 (1991).
  14. D. M. Akos, M. Stockmaster, J. B. Y. Tsui, and J. Caschera, “Direct bandpass sampling of multiple distinct RF signals,” IEEE Trans. Commun.47(7), 983–988 (1999). [CrossRef]
  15. A. J. Coulson, R. G. Vaughan, and M. A. Poletti, “Frequency-shifting using bandpass sampling,” IEEE Trans. Signal Process.42, 1556–1559 (1994).
  16. S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express12(20), 4822–4828 (2004). [CrossRef] [PubMed]
  17. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett.31(3), 362–364 (2006). [CrossRef] [PubMed]
  18. A.-H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express3(3), 633–649 (2012). [CrossRef] [PubMed]
  19. B. Otis, Bocock, R., “Downconversion Subsampling of RF Signals,” EECS 247 (2000).
  20. Y. Poberezhskiy and G. Poberezhskiy, “Sample-and-hold amplifiers performing internal antialiasing filtering and their applications in digital receivers,”in The 2000 IEEE International Symposium on Circuits and Systems,(ISCAS, Geneva, 2000), pp. 439–442.
  21. J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography,” Opt. Express18(9), 9511–9517 (2010). [CrossRef] [PubMed]
  22. T.-J. Ahn and D. Y. Kim, “Nonlinear frequency chirp measurement of frequency sweeping lasers for FD-OCT applications,” in Conference Proceedings - SPIE,N. Joseph, N. Stefan, H. Alexander, B.S. Christopher, eds. (SPIE, 2006), pp. 61081A.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (23149 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited