OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17973–17986

Compact real-time birefringent imaging spectrometer

Michael W. Kudenov and Eustace L. Dereniak  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17973-17986 (2012)
http://dx.doi.org/10.1364/OE.20.017973


View Full Text Article

Enhanced HTML    Acrobat PDF (3005 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design and experimental demonstration of a snapshot hyperspectral imaging Fourier transform (SHIFT) spectrometer is presented. The sensor, which is based on a multiple-image FTS (MFTS), offers significant advantages over previous implementations using Michelson interferometers. Specifically, its use of birefringent interferometry creates a vibration insensitive and ultra-compact (15x15x10 mm3) common-path interferometer while offering rapid reconstruction rates through the graphics processing unit. The SHIFT spectrometer’s theory and experimental prototype are described in detail. Included are reconstruction and spectral calibration procedures, followed by the spectrometer’s validation using measurements of gas-discharge lamps. Lastly, outdoor measurements demonstrate the sensor’s ability to resolve spectral signatures in typical outdoor lighting and environmental conditions.

© 2012 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

History
Original Manuscript: April 12, 2012
Revised Manuscript: May 31, 2012
Manuscript Accepted: July 11, 2012
Published: July 23, 2012

Citation
Michael W. Kudenov and Eustace L. Dereniak, "Compact real-time birefringent imaging spectrometer," Opt. Express 20, 17973-17986 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17973


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Biradar, P. S. Thenkabail, A. Platonov, X. Xiao, R. Geerken, P. Noojipady, H. Turral, and J. Vithanage, “Water productivity mapping methods using remote sensing,” J. Appl. Remote Sens.2(1), 023544 (2008). [CrossRef]
  2. R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A69(8), 748–758 (2006). [CrossRef] [PubMed]
  3. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45(22), 5453–5469 (2006). [CrossRef] [PubMed]
  4. R. Glenn Stellar and D. G, Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng.44, 013602 (2004).
  5. P. L. P. Dillon, D. M. Lewis, and F. G. Kaspar, “Color imaging system using a single CCD area array,” IEEE Trans. Electron. Dev.25(2), 102–107 (1978). [CrossRef]
  6. J. Mercier, T. Townsend, and R. Sundberg, “Utility assessment of a multispectral snapshot LWIR imager,” in Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010 2nd, 1–5 (2010).
  7. R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt.16(5), 056005 (2011). [CrossRef] [PubMed]
  8. A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging – the hyperpixel array camera,” Proc. SPIE7334, 73340H, 73340H-11 (2009). [CrossRef]
  9. M. R. Descour and E. L. Dereniak, “Nonscanning no-moving-parts imaging spectrometer,” Proc. SPIE2480, 48–64 (1995). [CrossRef]
  10. M. R. Descour, C. E. Volin, E. L. Dereniak, T. M. Gleeson, M. F. Hopkins, D. W. Wilson, and P. D. Maker, “Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser,” Appl. Opt.36(16), 3694–3698 (1997). [CrossRef] [PubMed]
  11. D. W. Fletcher-Holmes and A. R. Harvey, “Real-time imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt.7(6), S298–S302 (2005). [CrossRef]
  12. N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometer,” Proc. SPIE6302, 63020M, 63020M-11 (2006). [CrossRef]
  13. M. Kise, B. Park, K. C. Lawrence, and W. R. Windham, “Compact multi-spectral imaging system for contaminant detection on poultry carcass,” Proc. SPIE6503, 650305, 650305-11 (2007). [CrossRef]
  14. A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging,” Opt. Express18(6), 5602–5608 (2010). [CrossRef] [PubMed]
  15. M. W. Kudenov, M. E. L. Jungwirth, E. L. Dereniak, and G. R. Gerhart, “White-light Sagnac interferometer for snapshot multispectral imaging,” Appl. Opt.49(21), 4067–4076 (2010). [CrossRef] [PubMed]
  16. J. C. Ramella-Roman and S. A. Mathews, “Spectroscopic measurements of oxygen saturation in the retina,” IEEE J. Sel. Top. Quantum Electron.13(6), 1697–1703 (2007). [CrossRef]
  17. A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev.1(2), 205–207 (1994). [CrossRef]
  18. M. Francon and S. Mallick, Polarization Interferometers (John Wiley & Sons Ltd., 1971).
  19. C. C. Montarou and T. K. Gaylord, “Analysis and design of modified Wollaston prisms,” Appl. Opt.38(31), 6604–6616 (1999). [CrossRef] [PubMed]
  20. K. Oka and T. Kaneko, “Compact complete imaging polarimeter using birefringent wedge prisms,” Opt. Express11(13), 1510–1519 (2003). [CrossRef] [PubMed]
  21. J. Van Delden, U.S. Patent No. 6,674,532 B2, Jan. 6, 2004.
  22. M. W. Kudenov and E. L. Dereniak, “Compact snapshot birefringent imaging Fourier transform spectrometer,” Proc. SPIE7812, 781206, 781206-11 (2010). [CrossRef]
  23. V. Saptari, Fourier-transform spectroscopy instrumentation engineering (SPIE Press, 2004).
  24. J. Renau, P. K. Cheo, and H. G. Cooper, “Depolarization of linearly polarized EM waves backscattered from rough metals and inhomogeneous dielectrics,” J. Opt. Soc. Am.57(4), 459–466 (1967). [CrossRef] [PubMed]
  25. J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, “Hierarchical model-based motion estimation,” in Proceedings of the Second European Conference on Computer Vision, Springer-Verlag 588, 237–252, (1992).
  26. A. R. Harvey and D. W. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express12(22), 5368–5374 (2004). [CrossRef] [PubMed]
  27. E. Voigtman and J. D. Winefordner, “The multiplex disadvantage and excess low-frequency noise,” Appl. Spectrosc.41(7), 1182–1184 (1987). [CrossRef]
  28. E. A. Stubley and G. Horlick, “Measurement of inductively coupled plasma emission spectra using a Fourier transform spectrometer,” Appl. Spectrosc.39(5), 805–810 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited