OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18230–18237

Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, Y. P. Huang, and Y. F. Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 18230-18237 (2012)
http://dx.doi.org/10.1364/OE.20.018230


View Full Text Article

Enhanced HTML    Acrobat PDF (1550 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a high-power diode-pumped self-mode-locked Nd:YLF laser with the pulse repetition rate up to several GHz. A novel tactic is developed to efficiently select the output polarization state for achieving the stable TEM00-mode self-mode-locked operations at 1053 nm and 1047 nm, respectively. At an incident pump power of 6.93 W and a pulse repetition rate of 2.717 GHz, output powers as high as 2.15 W and 1.35 W are generated for the σ- and π-polarization, respectively. We experimentally find that decreasing the separation between the gain medium and the input mirror not only brings in the pulse shortening thanks to the enhanced effect of the spatial hole burning, but also effectively introduces the effect of the spectral filtering to lead the Nd:YLF laser to be in a second harmonic mode-locked status. Consequently, pulse durations as short as 8 ps and 8.5 ps are obtained at 1053 nm and 1047 nm with a pulse repetition rate of 5.434 GHz.

© 2012 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 22, 2012
Revised Manuscript: July 19, 2012
Manuscript Accepted: July 19, 2012
Published: July 24, 2012

Citation
Y. J. Huang, Y. S. Tzeng, C. Y. Tang, Y. P. Huang, and Y. F. Chen, "Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking," Opt. Express 20, 18230-18237 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-18230


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003). [CrossRef] [PubMed]
  2. K. J. Weingarten, D. C. Shannon, R. W. Wallace, and U. Keller, “Two-gigahertz repetition-rate, diode-pumped, mode-locked Nd:YLF laser,” Opt. Lett.15(17), 962–964 (1990). [CrossRef] [PubMed]
  3. G. P. A. Malcolm, P. F. Curley, and A. I. Ferguson, “Additive-pulse mode locking of a diode-pumped Nd:YLF laser,” Opt. Lett.15(22), 1303–1305 (1990). [CrossRef] [PubMed]
  4. T. Juhasz, S. T. Lai, and M. A. Pessot, “Efficient short-pulse generation from a diode-pumped Nd:YLF laser with a piezoelectrically induced diffraction modulator,” Opt. Lett.15(24), 1458–1460 (1990). [CrossRef] [PubMed]
  5. K. J. Weingarten, U. Keller, T. H. Chiu, and J. F. Ferguson, “Passively mode-locked diode-pumped solid-state-lasers that use an antiresonant Fabry - Perot saturable absorber,” Opt. Lett.18(8), 640–642 (1993). [CrossRef] [PubMed]
  6. M. B. Danailov, G. Cerullo, V. Magni, D. Segala, and S. De Silvestri, “Nonlinear mirror mode locking of a cw Nd:YLF laser,” Opt. Lett.19(11), 792–794 (1994). [CrossRef] [PubMed]
  7. S. D. Pan, J. L. He, Y. E. Hou, Y. X. Fan, H. T. Wang, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively CW mode-locked Nd:YLF laser by the LT-In0.25Ga0.75As absorber,” IEEE J. Quantum Electron.42(10), 1097–1100 (2006). [CrossRef]
  8. S. D. Pan and Y. G. Wang, “Diode end-pumped passively mode-locked Nd:YLF laser at 1047 nm using single-wall carbon nanotubes based saturable absorber,” Laser Phys.21(8), 1353–1357 (2011). [CrossRef]
  9. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996). [CrossRef]
  10. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996). [CrossRef]
  11. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B16(1), 46–56 (1999). [CrossRef]
  12. H. C. Liang, R. C. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express16(25), 21149–21154 (2008). [CrossRef] [PubMed]
  13. H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett.35(1), 4–6 (2010). [CrossRef] [PubMed]
  14. H. C. Liang, Y. J. Huang, P. Y. Chiang, and Y. F. Chen, “Highly efficient Nd:Gd0.6Y0.4VO4 laser by direct in-band pumping at 914 nm and observation of self-mode-locked operation,” Appl. Phys. B103(3), 637–641 (2011). [CrossRef]
  15. A. V. Okishev and W. Seka, “Diode-pumped Nd:YLF master oscillator for the 30-kJ (UV), 60-beam OMEGA laser facility,” IEEE J. Sel. Top. Quantum Electron.3(1), 59–63 (1997). [CrossRef]
  16. M. S. Ribeiro, D. F. Silva, E. P. Maldonado, W. de Rossi, and D. M. Zezell, “Effects of 1047-nm neodymium laser radiation on skin wound healing,” J. Clin. Laser Med. Surg.20(1), 37–40 (2002). [CrossRef] [PubMed]
  17. Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B, doi:. [CrossRef]
  18. G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett.32(18), 2741–2743 (2007). [CrossRef] [PubMed]
  19. B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part I,” Appl. Phys. B61(5), 429–437 (1995).F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part II,” Appl. Phys. B61(6), 569–579 (1995). [CrossRef]
  20. Y. J. Huang, Y. P. Huang, H. C. Liang, K. W. Su, Y. F. Chen, and K. F. Huang, “Comparative study between conventional and diffusion-bonded Nd-doped vanadate crystals in the passively mode-locked operation,” Opt. Express18(9), 9518–9524 (2010). [CrossRef] [PubMed]
  21. Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B103(4), 841–846 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited