OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18254–18267

Analysis of reflective Mach-Zehnder interferometry for electro-optic characterization of poled polymer films in multilayer structures

Dong Hun Park and Warren N. Herman  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 18254-18267 (2012)
http://dx.doi.org/10.1364/OE.20.018254


View Full Text Article

Enhanced HTML    Acrobat PDF (1020 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider the Mach-Zehnder interferometer (MZI) method that specifically uses a poled organic thin film as one of the reflective mirrors in order to characterize the two independent electro-optic tensor elements r 13 and r 33 . We discuss both a simple analysis based on a three-layer structure and a rigorous method including multiple reflection effects in a multilayer structure. In doing so, we find that the simple analysis of the reflective MZI method yields identical results to the reflection ellipsometric method (simple Teng-Man method), first introduced by Teng and Man as well as Shildkraut in 1990, when the ratio of r 13 to r 33 obtained from the MZI method is used in the analysis of the simple Teng-Man method. Error introduced by ignoring the multilayer nature of the sample structures in the MZI method is discussed and corrections are given for previous expressions in the literature for the simple analysis.

© 2012 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 14, 2012
Revised Manuscript: July 19, 2012
Manuscript Accepted: July 20, 2012
Published: July 25, 2012

Citation
Dong Hun Park and Warren N. Herman, "Analysis of reflective Mach-Zehnder interferometry for electro-optic characterization of poled polymer films in multilayer structures," Opt. Express 20, 18254-18267 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-18254


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. N. Herman, S. R. Flom, and S. H. Foulger, eds., Organic Thin Films for Photonic Applications (ACS, Symposium Series 2010) Vol. 1039.
  2. G. A. Lindsay and K. D. Singer, eds., Polymers for Second-Order Nonlinear Optics (ACS, Symposium Series 1995) Vol. 601.
  3. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro‐optic coefficient of poled polymers,” Appl. Phys. Lett.56(18), 1734–1736 (1990). [CrossRef]
  4. J. S. Schildkraut, “Determination of the electro optic coefficient of a poled polymer film,” Appl. Opt.29(19), 2839–2841 (1990). [CrossRef] [PubMed]
  5. Y. Shuto and M. Amano, “Reflection measurement technique of electro‐optic coefficients in lithium niobate crystals and poled polymer films,” J. Appl. Phys.77(9), 4632–4638 (1995). [CrossRef]
  6. F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng–Man technique,” Chem. Phys.245(1-3), 311–326 (1999). [CrossRef]
  7. D. H. Park, C. H. Lee, and W. N. Herman, “Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures,” Opt. Express14(19), 8866–8884 (2006). [CrossRef] [PubMed]
  8. C. A. Eldering, A. Knoesen, and S. T. Kowel, “Use of Fabry–Pérot devices for the characterization of polymeric electro‐optic films,” J. Appl. Phys.69(6), 3676–3686 (1991). [CrossRef]
  9. D. H. Park, J. Luo, A. K. Y. Jen, and W. N. Herman, “Simplified reflection Fabry-Perot method for determination of electro-optic coefficients of poled polymer thin films,” Polymers3(3), 1310–1324 (2011). [CrossRef]
  10. D. Morichère, P.-A. Chollet, W. Fleming, M. Jurich, B. A. Smith, and J. D. Swalen, “Electro-optic effects in two tolane side-chain nonlinear-optical polymers: comparison between measured coefficients and second-harmonic generation,” J. Opt. Soc. Am. B10(10), 1894–1900 (1993). [CrossRef]
  11. A. Chen, V. Chuyanov, S. Garner, W. H. Steier, and L. R. Dalton, “Modified attenuated total reflection for the fast and routine electro-optic measurement of nonlinear optical polymer thin films,” Technical Digest of the Organic Thin Films for Photonics Applications, OSA Technical Digest Series14, 158–160 (1997).
  12. D. H. Park, “Characterization of linear electro-optic effect of poled organic thin films”, Ph. D. Dissertation, University of Maryland, College Park, (2008).
  13. H. Y. Zhang, X. H. He, Y. H. Shih, and S. H. Tang, “A new method for measuring the electro-optic coefficients with higher sensitivity and higher accuracy,” Opt. Commun.86(6), 509–512 (1991). [CrossRef]
  14. W. Shi, Y. J. Ding, X. Mu, X. Yin, and C. Fang, “Electro-optic and electromechanical properties of poled polymer thin films,” Appl. Phys. Lett.79(23), 3749–3751 (2001). [CrossRef]
  15. R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, “Electro‐optic tensor ratio determination of side‐chain copolymers with electro‐optic interferometry,” J. Appl. Phys.75(4), 1869–1874 (1994). [CrossRef]
  16. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett.53(19), 1800–1802 (1988). [CrossRef]
  17. F. Qiu, K. Misawa, X. Cheng, A. Ueki, and T. Kobayashi, “Determination of complex tensor components of electro‐optic constants of dye‐doped polymer films with a Mach–Zehnder interferometer,” Appl. Phys. Lett.65(13), 1605–1607 (1994). [CrossRef]
  18. M. J. Shin, H. R. Cho, S. H. Han, and J. W. Wu, “Analysis of a Mach-Zehnder interferometry measurement of the Pockels coefficients in a poled polymer film with a reflection configuration,” J. Appl. Phys.83(4), 1848–1853 (1998). [CrossRef]
  19. C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K. Y. Jen, and N. Peyghambarian, “Mach–Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010). [CrossRef]
  20. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).
  21. J. F. Nye, Physical Properties of Crystals (Oxford University Press, 1957).
  22. S. H. Han and J. W. Wu, “Single-beam polarization interferometry measurement of the linear electro-optic effect in poled polymer films with a reflection configuration,” J. Opt. Soc. Am. B14(5), 1131–1137 (1997). [CrossRef]
  23. I. P. Kaminow, An Introduction to Electrooptic Devices (Academic Press Inc., 1974).
  24. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (John Wiley & Sons, 2003).
  25. For discussion of the relationship between EO coefficients and nonlinear polarization, see, e.gK. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B4(6), 968–976 (1987).
  26. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B12(3), 416–427 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited