OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18268–18280

Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy

Yuxiang Liu, Houxun Miao, Vladimir Aksyuk, and Kartik Srinivasan  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 18268-18280 (2012)
http://dx.doi.org/10.1364/OE.20.018268


View Full Text Article

Enhanced HTML    Acrobat PDF (1725 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on progress in developing compact sensors for atomic force microscopy (AFM), in which the mechanical transducer is integrated with near-field optical readout on a single chip. The motion of a nanoscale, doubly clamped cantilever was transduced by an adjacent high quality factor silicon microdisk cavity. In particular, we show that displacement sensitivity on the order of 1 fm/(Hz)1/2 can be achieved while the cantilever stiffness is varied over four orders of magnitude (≈0.01 N/m to ≈290 N/m). The ability to transduce both very soft and very stiff cantilevers extends the domain of applicability of this technique, potentially ranging from interrogation of microbiological samples (soft cantilevers) to imaging with high resolution (stiff cantilevers). Along with mechanical frequencies (> 250 kHz) that are much higher than those used in conventional AFM probes of similar stiffness, these results suggest that our cavity optomechanical sensors may have application in a wide variety of high-bandwidth AFM measurements.

© 2012 OSA

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(140.3948) Lasers and laser optics : Microcavity devices
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Microscopy

History
Original Manuscript: May 11, 2012
Revised Manuscript: July 6, 2012
Manuscript Accepted: July 16, 2012
Published: July 25, 2012

Citation
Yuxiang Liu, Houxun Miao, Vladimir Aksyuk, and Kartik Srinivasan, "Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy," Opt. Express 20, 18268-18280 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-18268


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Bhushan and O. Marti, “Scanning probe microsopy—principle of operation, instrumentation, and probes,” Chap. 21, in Springer Handbook of Nanotechnology, 3rd edition, B. Bhushan, ed. (Springer, Heidelberg, Germany, 2010).
  2. F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Sci. Instrum.75, 949–983 (2003).
  3. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15(25), 17172–17205 (2007). [CrossRef] [PubMed]
  4. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  5. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010). [CrossRef]
  6. T. Kouh, D. Karabacak, D. Kim, and K. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett.86(1), 013106 (2005). [CrossRef]
  7. K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett.11(2), 791–797 (2011). [CrossRef] [PubMed]
  8. A. Yacoot and L. Koenders, “Aspects of scanning force microscope probes and their effects on dimensional measurement,” J. Phys. D. Appl. Phys.41(10), 103001 (2008). [CrossRef]
  9. D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature430(6997), 329–332 (2004). [CrossRef] [PubMed]
  10. O. Basarir, S. Bramhavar, and K. L. Ekinci, “Monolithic integration of a nanomechanical resonator to an optical microdisk cavity,” Opt. Express20(4), 4272–4279 (2012). [CrossRef] [PubMed]
  11. K. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum.76(6), 061101 (2005). [CrossRef]
  12. P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D Part. Fields42(8), 2437–2445 (1990). [CrossRef] [PubMed]
  13. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5(12), 909–914 (2009). [CrossRef]
  14. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009). [CrossRef] [PubMed]
  15. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express13(5), 1515–1530 (2005). [CrossRef] [PubMed]
  16. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103(10), 103601 (2009). [CrossRef] [PubMed]
  17. J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011). [CrossRef] [PubMed]
  18. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol.24(12), 4433–4454 (2006). [CrossRef]
  19. S. Sridaran and S. A. Bhave, “Electrostatic actuation of silicon optomechanical resonators,” Opt. Express19(10), 9020–9026 (2011). [CrossRef] [PubMed]
  20. K. Srinivasan, P. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B70(8), 081306(R) (2004). [CrossRef]
  21. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express15(8), 4745–4752 (2007). [CrossRef] [PubMed]
  22. H. Miao, K. Srinivasan, M. T. Rakher, M. Davanco, and V. Aksyuk, “Cavity optomechanical sensors,” in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), , (IEEE, 2011), pp. 1535–1538.
  23. J. L. Yang, M. Despont, U. Drechsler, B. W. Hoogenboom, P. L. T. M. Frederix, S. Martin, A. Engel, P. Vettiger, and H. J. Hug, “Miniaturized single-crystal silicon cantilevers for scanning force microscopy,” Appl. Phys. Lett.86(13), 134101 (2005). [CrossRef]
  24. S. S. Verbridge, R. Ilic, H. G. Craighead, and J. M. Parpia, “Size and frequency dependent gas damping of nanomechanical resonators,” Appl. Phys. Lett.93(1), 013101 (2008). [CrossRef]
  25. C. Lissandrello, V. Yakhot, and K. L. Ekinci, “Crossover from hydrodynamics to the kinetic regime in confined nanoflows,” Phys. Rev. Lett.108(8), 084501 (2012). [CrossRef] [PubMed]
  26. W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain, 7th ed. (McGraw-Hill, 2002), App. A.
  27. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005). [CrossRef] [PubMed]
  28. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  29. Y. F. Dufrêne, “Towards nanomicrobiology using atomic force microscopy,” Nat. Rev. Microbiol.6(9), 674–680 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited