OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18281–18286

Temperature compensated microfiber Bragg gratings

Shuai Gao, Long Jin, Yang Ran, Li-Peng Sun, Jie Li, and Bai-Ou Guan  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 18281-18286 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (850 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, temperature compensated microfiber Bragg grating (mFBG) is realized by use of a liquid with a negative thermo-optic coefficient. The effects of grating elongation and the index change of silica glass are compensated by refractive index change of the liquid through evanescent-field interaction. A reduced thermal sensitivity of 0.67 pm/°C is achieved, which is 1/15 in magnitude of the uncompensated counterparts. Further theoretical analysis demonstrates that temperature insensitivity can be obtained with different combinations of microfiber diameter and the refractive index/thermal optic coefficient of the employed liquid. The proposed method is promising due to the compactness and high flexibility of the device.

© 2012 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 11, 2012
Revised Manuscript: July 3, 2012
Manuscript Accepted: July 23, 2012
Published: July 25, 2012

Shuai Gao, Long Jin, Yang Ran, Li-Peng Sun, Jie Li, and Bai-Ou Guan, "Temperature compensated microfiber Bragg gratings," Opt. Express 20, 18281-18286 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, “Temperature de-sensitization of delay in optical fibres for sensor applications,” Electron. Lett.19(24), 1039–1040 (1983). [CrossRef]
  2. D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modavis, and R. M. Morena, “A novel negative expansion substrate material for athermalizing fiber Bragg,” in 22nd European Conference on Optical Communication- ECOC'96, Oslo, Norway, September 15–19, 1996.
  3. T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, “Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes,” Electron. Lett.33(5), 417–419 (1997). [CrossRef]
  4. R. Kashyap, Fibre Bragg Gratings, 2nd ed. (Academic Press, 2009),Chap. 10.
  5. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, “Passive temperature-compensating package for optical fiber gratings,” Appl. Opt.34(30), 6859–6861 (1995). [CrossRef] [PubMed]
  6. G. W. Yoffe, P. A. Krug, F. Ouelette, and D. Thorncraft, “Temperature-compensated optical-fiber Bragg gratings,” in Optical Fiber Communications Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper WI4.
  7. R. Kashyap, D. Williams, and R. P. Smith, “Novel liquid and liquid crystal cored optical fibre Bragg gratings,” in Optical Society of America Topical meeting on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Williamsburg, USA, (ISBN 1 55752517 X), Opt. Soc. America, pp 25–7, 26–28 October 1997.
  8. M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, “Passive temperature-compensating technique for microstructured fiber Bragg gratings,” IEEE Sens. J.8(7), 1073–1078 (2008). [CrossRef]
  9. N. Mothe and D. Pagnoux, M. CV. Phan Huy, G. Dewinter, Laffont, and P. Ferdinand, “Thermal wavelength stabilization of Bragg gratings photowritten in hole-filled microstructured optical fibers,” Opt. Express16(23), 19018–19033 (2008). [CrossRef] [PubMed]
  10. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  11. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  12. L. M. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Zhe Jiang University Press, Zhe Jiang, 2009), Chap. 1.
  13. J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A16(8), 1992–1996 (1999). [CrossRef]
  14. Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011). [CrossRef] [PubMed]
  15. Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012). [CrossRef]
  16. K. M. Chung, Z. Y. Liu, C. Lu, and H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett.24(8), 700–702 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited