OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18313–18318

Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer

B. I. Akca, C. R. Doerr, G. Sengo, K. Wörhoff, M. Pollnau, and R. M. de Ridder  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 18313-18318 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new synchronized design for flattening the passband of an arrayed-waveguide grating (AWG) over a broad wavelength range of 90 nm. A wavelength-insensitive 3-dB balanced coupler is designed to be used in duplicate in a Mach-Zehnder interferometer (MZI); the phase deviation created by one of the balanced couplers is cancelled by flipping the other coupler around. This MZI is arranged in tandem with the AWG such that the output signal of the MZI is the input signal of the AWG. We demonstrate a 5-channel, 18-nm-spacing AWG with a 0.5-dB bandwidth of 12 nm over a 90-nm spectral range. A low-loss cascaded AWG system is demonstrated by using the MZI-synchronized flat-top AWG as a primary filter.

© 2012 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(080.1238) Geometric optics : Array waveguide devices

ToC Category:
Optical Devices

Original Manuscript: June 6, 2012
Revised Manuscript: July 18, 2012
Manuscript Accepted: July 20, 2012
Published: July 25, 2012

B. I. Akca, C. R. Doerr, G. Sengo, K. Wörhoff, M. Pollnau, and R. M. de Ridder, "Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer," Opt. Express 20, 18313-18318 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. K. Smit and C. van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron.2(2), 236–250 (1996). [CrossRef]
  2. B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron.18(3), 1223–1233 (2012). [CrossRef]
  3. N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed-waveguide grating,” Opt. Lett.36(23), 4629–4631 (2011). [CrossRef] [PubMed]
  4. N. Ismail, B. Imran Akca, F. Sun, K. Wörhoff, R. M. de Ridder, M. Pollnau, and A. Driessen, “Integrated approach to laser delivery and confocal signal detection,” Opt. Lett.35(16), 2741–2743 (2010). [CrossRef] [PubMed]
  5. M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett.32(5), 449–451 (1996). [CrossRef]
  6. K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett.32(18), 1661–1662 (1996). [CrossRef]
  7. K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett.20(1), 43–45 (1995). [CrossRef] [PubMed]
  8. B. Fondeur, A. L. Sala, H. Yamada, R. Brainard, E. Egan, S. Thekdi, N. Gopinathan, D. Nakamoto, and A. Vaidyanathan, “Ultra wide AWG with hyper-Gaussian profile,” IEEE Photon. Technol. Lett.16(12), 2628–2630 (2004). [CrossRef]
  9. C. R. Doerr, R. Pafchek, and L. W. Stulz, “Integrated band demultiplexer using waveguide grating routers,” IEEE Photon. Technol. Lett.15(8), 1088–1090 (2003). [CrossRef]
  10. Y. Inoue, M. Oguma, T. Kitoh, M. Ishii, T. Shibata, Y. Hibino, H. Kawata, and T. Sugie, “Low-crosstalk 4-channel coarse WDM filter using silica-based planar-lightwave-circuit,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper TuK6.
  11. C. Dragone, “Frequency routing device having a wide and substantially flat passband,” US Patent 5,412,744 (2 May 1995).
  12. C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett.14(1), 56–58 (2002). [CrossRef]
  13. C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photon. Technol. Lett.15(7), 918–920 (2003). [CrossRef]
  14. B. E. Little and T. E. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photon. Technol. Lett.9(12), 1607–1609 (1997). [CrossRef]
  15. K. Takada, M. Abe, T. Shibata, and K. Okamoto, “10 GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett.13(6), 577–578 (2001). [CrossRef]
  16. K. Takada, H. Yamada, and K. Okamoto, “320-channel multiplexer consisting of a 100 GHz-spaced parent AWG and 10 GHz-spaced subsidiary AWGs,” Electron. Lett.35(10), 824–826 (1999). [CrossRef]
  17. K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, “10 GHz-spaced 1010-channel AWG filter achieved by tandem connection of primary and secondary AWGs,” in Proceeding of European. Conference on Optical Communications (IEEE 2000), pp. PD3–8.
  18. K. Takada, M. Abe, T. Shibata, and K. Okamoto, “5 GHz-spaced 4200-channel two-stage tandem demultiplexer for ultra-multi-wavelength light source using supercontinuum generation,” Electron. Lett.38(12), 572–573 (2002). [CrossRef]
  19. K. Takada, M. Abe, T. Shibata, and K. Okamoto, “Low-loss 10-GHz-spaced tandem multi/demultiplexer with more than 1000 channels using a 1×5 interference multi/demultiplexer as a primary filter,” IEEE Photon. Technol. Lett.14(1), 59–61 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited