OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18326–18335

Waveguide-fed optical hybrid plasmonic patch nano-antenna

Leila Yousefi and Amy C. Foster  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 18326-18335 (2012)
http://dx.doi.org/10.1364/OE.20.018326


View Full Text Article

Enhanced HTML    Acrobat PDF (1688 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel optical hybrid plasmonic patch nano-antenna for operation at the standard telecommunication wavelength of 1550 nm. The nano-antenna is designed to be compatible with a hybrid plasmonic waveguide through matching of both the operational mode and the wave impedance. The antenna is designed to receive the optical signal from a planar waveguide and redirect the signal out of plane, and is therefore useful for inter- or intra-chip optical communications and sensing. The transmission line model in conjunction with surface plasmon theory is used to develop analytical formulas for design and analysis, and a 3-dimensional full-wave numerical method is used to validate the design. The proposed device provides a bandwidth of more than 15 THz, a gain of 5.6 dB, and an efficiency of 87%. Furthermore, by designing an 8 × 8 array of the proposed antenna, a directivity of 20 dBi and steering of the beam angle are achieved by controlling the relative phase shift between elements of the array.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: May 8, 2012
Revised Manuscript: July 14, 2012
Manuscript Accepted: July 18, 2012
Published: July 26, 2012

Citation
Leila Yousefi and Amy C. Foster, "Waveguide-fed optical hybrid plasmonic patch nano-antenna," Opt. Express 20, 18326-18335 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-18326


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Novotny and N. F. van Hulst, “Antennas for light,” Nat Photon5, 83–90 (2011). [CrossRef]
  2. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010). [CrossRef] [PubMed]
  3. H. Taminiau, D. Stefani, B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon2, 234–237 (2008). [CrossRef]
  4. T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat Commun2, 481–486 (2011). [CrossRef] [PubMed]
  5. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express16, 10858–10866 (2008). [CrossRef] [PubMed]
  6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011). [CrossRef] [PubMed]
  7. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007). [CrossRef] [PubMed]
  8. J. Wessel, “Surface-enhanced optical microscopy,” J. Opt. Soc. Am. B2, 1538–1541 (1985). [CrossRef]
  9. U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett.62, 458–461 (1989). [CrossRef] [PubMed]
  10. J. Alda, J. M. Rico-Garca, J. M. Lpez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology16, S230 (2005). [CrossRef]
  11. F. Gonzlez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Physics & Technology46, 418–428 (2005). [CrossRef] [PubMed]
  12. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett.70, 1354–1356 (1997). [CrossRef]
  13. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005). [CrossRef] [PubMed]
  14. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93, 200801 (2004). [CrossRef] [PubMed]
  15. A. Alu and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett.101, 043901 (2008). [CrossRef] [PubMed]
  16. A. Alu and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B78, 195111 (2008).
  17. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002). [CrossRef] [PubMed]
  18. M. W. Maqsood, R. Mehfuz, and K. J. Chau, “Design and optimization of a high-efficiency nanoscale ± 90 degree light-bending structure by mode selection and tailoring,” Appl. Phys. Lett.97, 151111 (2010). [CrossRef]
  19. S. Sederberg and A. Elezzabi, “Sierpiski fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna,” Opt. Express19, 10456–10461 (2011). [CrossRef] [PubMed]
  20. S. Sederberg and A. Y. Elezzabi, “Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared,” Opt. Express19, 15532–15537 (2011). [CrossRef] [PubMed]
  21. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon2, 226–229 (2008). [CrossRef]
  22. L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10, 1229–1233 (2010). [CrossRef] [PubMed]
  23. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater7, 442–453 (2008). [CrossRef] [PubMed]
  24. Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444, 740–743 (2006). [CrossRef] [PubMed]
  25. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat Photon3, 658–661 (2009). [CrossRef]
  26. L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Ann. Rev. Phys. Chem.57, 303–331 (2006). [CrossRef]
  27. R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” Selected Topics in Quantum Electronics, IEEE Journal14, 1496–1501 (2008). [CrossRef]
  28. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18, 348–363 (2010). [CrossRef] [PubMed]
  29. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18, 11728–11736 (2010). [CrossRef] [PubMed]
  30. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009). [CrossRef] [PubMed]
  31. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat Photon2, 496–500 (2008). [CrossRef]
  32. J. Guo and R. Adato, “Control of 2d plasmon-polariton mode with dielectric nanolayers,” Opt. Express16, 1232–1237 (2008). [CrossRef] [PubMed]
  33. K. Wang and A. C. Foster, “Optimization of cmos-compatible hybrid plasmonic waveguides for nonlinear applications,” in “OSA Technical Digest (CD),” (Optical Society of America, 2011), JTuB15 (2011).
  34. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17, 16646–16653 (2009). [CrossRef] [PubMed]
  35. D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nat Commun2, 10.1038 (2011). [CrossRef]
  36. K. J. A. Ooi, P. Bai, M. X. Gu, and L. K. Ang, “Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides,” Opt. Express19, 17075–17085 (2011). [CrossRef] [PubMed]
  37. A. Yaacobi, E. Timurdogan, and M. R. Watts, “Vertical emitting aperture nanoantennas,” Opt. Letters37, 1454–1456 (2012). [CrossRef]
  38. Q. Song, S. Campione, O. Boyraz, and F. Capolino, “Silicon-based optical leaky wave antenna with narrow beam radiation,” Opt. Express19, 8735–8749 (2011). [CrossRef] [PubMed]
  39. R. F. Oulton, “Surface plasmon lasers: sources of nanoscopic light 15,” Materials Today15, 26–34 (2012). [CrossRef]
  40. F. Amzajerdian, D. F. Pierrottet, L. B. Petway, G. D. Hines, and V. E. Roback, “Lidar systems for precision navigation and safe landing on planetary bodies,” NASA. Technical Reports (2011).
  41. C. K. Toth, “R&d of mobile lidar mapping and future trends,” in “Proceeding of ASPRS 2009 Annual Conference (Baltimore, Maryland)”, (2009).
  42. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Reports on Progress in Physics70, 1–88 (2007). [CrossRef]
  43. D. M. Pozar, Microwave Engineering, 2nd Edition (John Wiley and Sons, 1998).
  44. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  45. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition (Wiley, 2005).
  46. J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid crystal cladding,” Opt. Express20, 15359–15376 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited