OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18449–18458

Twisted nematic liquid crystal polarization grating with the handedness conservation of a circularly polarized state

Michinori Honma and Toshiaki Nose  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 18449-18458 (2012)
http://dx.doi.org/10.1364/OE.20.018449


View Full Text Article

Enhanced HTML    Acrobat PDF (1995 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a liquid crystal (LC) polarization grating that conserves the polarization state of incident light, wherein the variation range of the twist angle is 2π. The design scheme for theoretically 100% diffraction efficiency of the first-diffraction order is derived, and a prototype LC grating is evaluated. Under zero voltage, the fabricated LC grating exhibits high efficiency of the first-order diffraction, validating the proposed design scheme. The high efficiency of the second-order diffraction can also be achieved under a high voltage so that the LC director in the midplane is vertical to the substrate plane. The circular polarization sense of the second-order diffraction is identical to that of the incident light as in the case of the first-order diffraction. This grating functions as a beam deflector, steering the input beam in three different directions (zeroth-, first-, and second-order diffractions) by adjusting the applied voltage.

© 2012 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

History
Original Manuscript: May 16, 2012
Revised Manuscript: July 9, 2012
Manuscript Accepted: July 14, 2012
Published: July 27, 2012

Citation
Michinori Honma and Toshiaki Nose, "Twisted nematic liquid crystal polarization grating with the handedness conservation of a circularly polarized state," Opt. Express 20, 18449-18458 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-18449


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Wen, R. G. Petschek, and C. Rosenblatt, “Nematic liquid-crystal polarization gratings by modification of surface alignment,” Appl. Opt.41(7), 1246–1250 (2002). [CrossRef] [PubMed]
  2. H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys.94(3), 1298–1303 (2003). [CrossRef]
  3. M. Honma and T. Nose, “Liquid-crystal blazed grating with azimuthally distributed liquid-crystal directors,” Appl. Opt.43(27), 5193–5197 (2004). [CrossRef] [PubMed]
  4. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys.98(12), 123102 (2005). [CrossRef]
  5. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express14(22), 10558–10564 (2006). [CrossRef] [PubMed]
  6. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett.89(12), 121105 (2006). [CrossRef]
  7. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett.31(15), 2248–2250 (2006). [CrossRef] [PubMed]
  8. S.-T. Wu, Y. S. Chen, J. H. Guo, and A. Y.-G. Fuh, “Fabrication of twisted nematic gratings using polarization hologram based on azo-dye-doped liquid crystals,” Jpn. J. Appl. Phys.45(12), 9146–9151 (2006). [CrossRef]
  9. L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “A nematic liquid crystal as an amplifying replica of a holographic polarization grating,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)449(1), 147–160 (2006). [CrossRef]
  10. H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)451(1), 1–19 (2006). [CrossRef]
  11. J.-C. Chao, W.-Y. Wu, and A. Y.-G. Fuh, “Diffraction characteristics of a liquid crystal polarization grating analyzed using the finite-difference time-domain method,” Opt. Express15(25), 16702–16711 (2007). [CrossRef] [PubMed]
  12. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett.33(20), 2287–2289 (2008). [CrossRef] [PubMed]
  13. L. Shi, P. F. McManamon, and P. J. Bos, “Liquid crystal optical phase plate with a variable in-plane gradient,” J. Appl. Phys.104(3), 033109 (2008). [CrossRef]
  14. S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express17(3), 1817–1830 (2009). [CrossRef] [PubMed]
  15. M. Kuzuwata, T. Sasaki, N. Kawatsuki, and H. Ono, “Fabrication of twisted nematic structure and vector grating cells by one-step exposure on photocrosslinkable polymer liquid crystals,” Opt. Lett.37(6), 1115–1117 (2012). [CrossRef] [PubMed]
  16. M. Honma and T. Nose, “Temperature-independent achromatic liquid-crystal grating with spatially distributed twisted-nematic orientation,” Appl. Phys. Express5(6), 062501 (2012). [CrossRef]
  17. R. K. Komanduri, C. Oh, and M. J. Escuti, “Polarization independent projection systems using thin film polymer polarization gratings and standard liquid crystal microdisplays,” SID Int. Symp. Dig. Tech. Pap. 40, 487–490 (2009).
  18. E. Seo, H. C. Kee, Y. Kim, S. Jeong, H. Choi, S. Lee, J. Kim, R. K. Komanduri, and M. J. Escuti, “Polarization conversion system using a polymer polarization grating,” SID Int. Symp. Dig. Tech. Pap. 42, 540–543 (2011).
  19. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett.24(9), 584–586 (1999). [CrossRef] [PubMed]
  20. G. Cipparrone, A. Mazzulla, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir-Blodgett films for polarimetric applications,” J. Opt. Soc. Am. B19(5), 1157–1161 (2002). [CrossRef]
  21. M. J. Escuti, C. Oh, C. Sanchez, C. Bastiaansen, and D. J. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE6302, 630207, 630207-11 (2006). [CrossRef]
  22. A. Lien, “The general and simplified Jones matrix representations for the high pretilt twisted nematic cell,” J. Appl. Phys.67(6), 2853–2856 (1990). [CrossRef]
  23. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons Ltd, 2006) Chap. 3.
  24. J. A. Davis, I. Moreno, and P. Tsai, “Polarization Eigenstates for Twisted-Nematic Liquid-Crystal Displays,” Appl. Opt.37(5), 937–945 (1998). [CrossRef] [PubMed]
  25. M. Honma and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys.42(Part 1, No. 11), 6992–6997 (2003). [CrossRef]
  26. S. Varghese, G. P. Crawford, C. W. M. Bastiaansen, D. K. G. de Boer, and D.J. Broer, “Microrubbing technique to produce high pretilt multidomain liquid crystal alignment,” Appl. Phys. Lett.85(2), 230–232 (2004). [CrossRef]
  27. J. Kim, J. H. Na, and S.-D. Lee, “Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting,” Opt. Express20(3), 3034–3042 (2012). [CrossRef] [PubMed]
  28. T. Scharf, Polarized Light in Liquid Crystals and Polymers, (Wiley Interscience, 2006) p. 337.
  29. H. P. Herzig, et al., Diffractive Optics and Optical Microsystems, (Plenum Press, 1997) p. 26.
  30. R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(2), 021701 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited