OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18505–18514

Superbroad near to mid infrared luminescence from closo-deltahedral Bi53+ cluster in Bi5(GaCl4)3

Renping Cao, Mingying Peng, Jiayu Zheng, Jianrong Qiu, and Qinyuan Zhang  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 18505-18514 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (954 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Closo-deltahedral Bi53+ cluster in Bi5(GaCl4)3, which can be synthesized in benzene by oxidizing bismuth metal either with BiCl3 or GaCl3, respectively, can absorb ultraviolet, visible and infrared lights, and luminesce superbroadly in near to mid infrared (NMIR) spectral range from 1 to 3μm at room temperature. Slight geometry change of the cluster can lead to the redshift of emission peak. These observations may initialize the development of Bi-based NMIR light sources with superbroad emission spectrum, where Bi53+ or similar polycationic species act as activators. Disputable crystal structure of Bi5(GaCl4)3 was redefined by classic Rietveld refining analysis. Consistent with crystallographic data, excitation, emission, temporal decay and time-resolved infrared emission spectra all reveal only one type of luminescent centers, viz. Bi53+, in the compound. And a new absorption of Bi53+ was found at ~1100nm.

© 2012 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.2750) Materials : Glass and other amorphous materials

ToC Category:

Original Manuscript: June 12, 2012
Revised Manuscript: July 11, 2012
Manuscript Accepted: July 19, 2012
Published: July 27, 2012

Renping Cao, Mingying Peng, Jiayu Zheng, Jianrong Qiu, and Qinyuan Zhang, "Superbroad near to mid infrared luminescence from closo-deltahedral Bi5 3+ cluster in Bi5(GaCl4)3," Opt. Express 20, 18505-18514 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Xu, H. Zhao, L. Su, J. Yu, P. Zhou, H. Tang, L. Zheng, and H. Li, “Study on the effect of heat-annealing and irradiation on spectroscopic properties of Bi:alpha-BaB2O4 single crystal,” Opt. Express18(4), 3385–3391 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-4-3385 . [CrossRef] [PubMed]
  2. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011). [CrossRef] [PubMed]
  3. A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express19(7), 6599–6608 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6599 . [CrossRef] [PubMed]
  4. V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008). [CrossRef]
  5. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-22-19345 . [CrossRef] [PubMed]
  6. S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett.91(6), 061919 (2007). [CrossRef]
  7. I. Razdobreev and L. Bigot, “On the multiplicity of bismuth active centres in germano-aluminosilicate preform,” Opt. Mater.33(6), 973–977 (2011). [CrossRef]
  8. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21169 . [CrossRef] [PubMed]
  9. M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express18(12), 12852–12863 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12852 . [CrossRef] [PubMed]
  10. M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009). [CrossRef] [PubMed]
  11. M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010). [CrossRef] [PubMed]
  12. M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20799 . [CrossRef] [PubMed]
  13. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004). [CrossRef] [PubMed]
  14. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005). [CrossRef] [PubMed]
  15. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express13(18), 6892–6898 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6892 . [CrossRef] [PubMed]
  16. M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009). [CrossRef]
  17. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009). [CrossRef] [PubMed]
  18. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011). [CrossRef]
  19. M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009). [CrossRef]
  20. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007). [CrossRef]
  21. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006). [CrossRef]
  22. Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011). [CrossRef]
  23. J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun.140(1), 38–41 (2006). [CrossRef]
  24. A. Romanov, Z. Fattakhova, D. Zhigunov, V. Korchak, and V. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater.33(4), 631–634 (2011). [CrossRef]
  25. M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008). [CrossRef]
  26. H. T. Sun, F. Shimaoka, Y. Miwa, J. Ruan, M. Fujii, J. Qiu, and S. Hayashi, “Sensitized superbroadband near-IR emission in bismuth glass/Si nanocrystal superlattices,” Opt. Lett.35(13), 2215–2217 (2010). [CrossRef] [PubMed]
  27. I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009). [CrossRef]
  28. E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005). [CrossRef]
  29. R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-3-2562&id=226693 . [CrossRef] [PubMed]
  30. W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express20(14), 15692–15702 (2012), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-14-15692&id=239280 . [CrossRef] [PubMed]
  31. N. J. Bjerrum, C. R. Boston, and G. P. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem.6(6), 1162–1172 (1967). [CrossRef]
  32. E. Ahmed, D. Kohler, and M. Ruck, “Room-temperature synthesis of bismuth clusters in ionic liquids and crystal growth of Bi5(AlCl4)3,” Z. Anorg. Allg. Chem.635(2), 297–300 (2009). [CrossRef]
  33. H. T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2), 100–102 (2011). [CrossRef] [PubMed]
  34. H. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem.21(12), 4060–4063 (2011). [CrossRef]
  35. S. Ulvenlund, A. Wheatley, and L. Bengtsson, “Synthesis of main-group metal clusters in organic solvents,” J. Chem. Soc. Chem. Commun.1(1), 59–60 (1995). [CrossRef]
  36. J. Corbett, “Homopolyatomic ions of the heavy post-transition elements. the preparation, properties and bonding of Bi5(AlCl4)3 and Bi4(AlCl4),” Inorg. Chem.7(2), 198–208 (1968). [CrossRef]
  37. S. Ulvenlund, K. Ståhl, and L. Bengtsson-Kloo, “Structural and quantum chemical study of Bi53+ and isoelectronic main-group metal clusters. The crystal structure of pentabismuth(3+) tetrachlorogallate(III) refined from X-ray powder diffraction data and synthetic attempts on its antimony analogue,” Inorg. Chem.35(1), 223–230 (1996). [CrossRef] [PubMed]
  38. R. C. Burns, R. J. Gillespie, and W.-C. Luk, “The preparation, spectroscopic properties, and structure of the pentabismuth(3+) cation, Bi53+,” Inorg. Chem.17(12), 3596–3604 (1978). [CrossRef]
  39. B. Krebs, M. Mummert, and C. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met.116(1), 159–168 (1986). [CrossRef]
  40. A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+ luminescence in AlCl3/ZnCl2/BiCl3 chloride glass,” Opt. Express20(7), 7212–7220 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7212 . [CrossRef] [PubMed]
  41. M. Lindsjö, A. Fischer, and L. Kloo, “Improvements of and insights into the isolation of bismuth polycations from benzene solution – single-crystal structure determinations of Bi8[GaCl4]2 and Bi5[GaCl4]3,” Eur. J. Inorg. Chem.2005(4), 670–675 (2005). [CrossRef]
  42. S. Ulvenlund, L. Bengtsson-Kloo, and K. Stahl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solutions,” J. Chem. Soc., Faraday Trans.91(23), 4223–4234 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 2 Fig. 1 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited