OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18555–18567

Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes

Jiao Wang, Tianrong Zhan, Gaoshan Huang, Xugao Cui, Xinhua Hu, and Yongfeng Mei  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 18555-18567 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1995 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Tubular oxide optical microcavities with thin walls (< 100 nm) have been fabricated by releasing pre-stressed Y2O3/ZrO2 bi-layered nanomembranes. Optical characterization demonstrates strong whispering gallery modes with a high quality-factor and fine structures in the visible range, which are due to their high-index-contrast property (high refractive index in thin walls). Moreover, the strong axial light confinement observed in rolled-up circular nanomembranes well agrees with our theoretical calculation by using Mie scattering theory. Novel material design and superior optical resonant properties in such self-rolled micro-tubular cavities promise many potential applications e.g. in optofluidic sensing and lasing.

© 2012 OSA

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.4000) Optical devices : Microstructure fabrication
(230.5750) Optical devices : Resonators
(290.4020) Scattering : Mie theory
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Devices

Original Manuscript: May 23, 2012
Revised Manuscript: July 20, 2012
Manuscript Accepted: July 20, 2012
Published: July 30, 2012

Jiao Wang, Tianrong Zhan, Gaoshan Huang, Xugao Cui, Xinhua Hu, and Yongfeng Mei, "Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes," Opt. Express 20, 18555-18567 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  2. Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today46(6), 66–73 (1993). [CrossRef]
  3. A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008). [CrossRef]
  4. O. G. Schmidt and K. Eberl, “Nanotechnology. Thin solid films roll up into nanotubes,” Nature410(6825), 168 (2001). [CrossRef] [PubMed]
  5. A. Cho, “Nanotechnology. Pretty as you please, curling films turn themselves into nanodevices,” Science313(5784), 164–165 (2006). [CrossRef] [PubMed]
  6. R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett.90(9), 091905 (2007). [CrossRef]
  7. S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett.94(8), 081101 (2009). [CrossRef]
  8. K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010). [CrossRef] [PubMed]
  9. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett.31(9), 1319–1321 (2006). [CrossRef] [PubMed]
  10. H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007). [CrossRef] [PubMed]
  11. Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4085–4090 (2008). [CrossRef]
  12. G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett.94(14), 141901 (2009). [CrossRef]
  13. V. A. Bolaños Quiñones, G. S. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009). [CrossRef] [PubMed]
  14. G. S. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. F. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010). [CrossRef] [PubMed]
  15. E. J. Smith, S. Schulze, S. Kiravittaya, Y. F. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011). [CrossRef] [PubMed]
  16. E. J. Smith, Z. W. Liu, Y. F. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett.10(1), 1–5 (2010). [CrossRef] [PubMed]
  17. S. M. Harazim, V. A. Bolaños Quiñones, S. Kiravittaya, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications,” Lab Chip12(15), 2649–2655 (2012). [CrossRef] [PubMed]
  18. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, R. Degl'Innocenti, and P. Guenter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007). [CrossRef]
  19. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992). [CrossRef]
  20. Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008). [CrossRef] [PubMed]
  21. T. R. Zhan, C. Xu, F. Y. Zhao, Z. Q. Xiong, X. H. Hu, G. S. Huang, Y. F. Mei, and J. Zi, “Optical resonances in tubular microcavities with subwavelength wall thicknesses,” Appl. Phys. Lett.99(21), 211104 (2011). [CrossRef]
  22. F. S. De Vicente, A. C. De Castro, M. F. De Souza, and M. Siu Li, “Luminescence and structure of Er3+ doped zirconia films deposited by electron beam evaporation,” Thin Solid Films418(2), 222–227 (2002). [CrossRef]
  23. T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006). [CrossRef] [PubMed]
  24. L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers,” Appl. Phys. Lett.81(22), 4248–4850 (2002). [CrossRef]
  25. F. Li, Z. T. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett.34(19), 2915–2917 (2009). [CrossRef] [PubMed]
  26. F. Li and Z. T. Mi, “Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers,” Opt. Express17(22), 19933–19939 (2009). [CrossRef] [PubMed]
  27. C. Strelow, C. M. Schultz, H. Rehberg, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Three dimensionally confined optical modes in quantum-well microtube ring resonators,” Phys. Rev. B76(4), 045303 (2007). [CrossRef]
  28. A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010). [CrossRef]
  29. A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron.32(5), 377–400 (2002). [CrossRef]
  30. A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel)10(3), 1765–1781 (2010). [CrossRef] [PubMed]
  31. J. Niehusmann, A. Vörckel, PP. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett.29(24), 2861 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited