OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18692–18706

Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers

Salman Karbasi, Craig R. Mirr, Ryan J. Frazier, Parisa Gandomkar Yarandi, Karl W. Koch, and Arash Mafi  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 18692-18706 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1350 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We recently reported the observation of transverse Anderson localization as the waveguiding mechanism in optical fibers with random transverse refractive index profiles [1]. Here, we explore the impact of the design parameters of the disordered fiber on the beam radius of the propagating transverse localized beam. We show that the optimum value of the fill-fraction of the disorder is 50% and a lower value results in a larger beam radius. We also explore the impact of the average size of the individual random features on the value of the localized beam radius and show how the boundary of the fiber can impact the observed localization radius. A larger refractive index contrast between the host medium and the disorder sites results in smaller value of the beam radius.

© 2012 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(260.3160) Physical optics : Interference
(290.4210) Scattering : Multiple scattering

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 8, 2012
Revised Manuscript: July 7, 2012
Manuscript Accepted: July 14, 2012
Published: July 31, 2012

Salman Karbasi, Craig R. Mirr, Ryan J. Frazier, Parisa Gandomkar Yarandi, Karl W. Koch, and Arash Mafi, "Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers," Opt. Express 20, 18692-18706 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Karbasi, C. R. Mirr, P. G. Yarandi, R. J. Frazier, K. W. Koch, and A. Mafi, “Observation of transverse Anderson localization in an optical fiber,” Opt. Lett.37, 2304–2306 (2012) . [CrossRef] [PubMed]
  2. T. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Konig, and U. Leonhardt, “Fiber optical analog of the event horizon,” Science, 3191367–1370 (2008). [CrossRef] [PubMed]
  3. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.211547–1549 (1996). [CrossRef] [PubMed]
  4. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett.22, 961–963 (1997). [CrossRef] [PubMed]
  5. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Tech. Lett.12, 807–809 (2000). [CrossRef]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25, 25–27 (2000). [CrossRef]
  7. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science20, 1476–1478 (1998). [CrossRef]
  8. S. Coleman, Aspects of Symmetry: Selected Erice Lectures (Cambridge University Press, 1985). [CrossRef]
  9. F. Bloch, “Uber die quantenmechanik der elektronen in kristallgittern,” Z. Physik52, 555–600 (1928). [CrossRef]
  10. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev.109, 1492–1505 (1958). [CrossRef]
  11. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett.53, 2169–2172 (1984). [CrossRef]
  12. P. W. Anderson, “The question of classical localization: a theory of white paint?” Phil. Mag. B52, 505–509 (1985). [CrossRef]
  13. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58, 2486–2489 (1987). [CrossRef] [PubMed]
  14. A. D. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today6224–29 (2009). [CrossRef]
  15. A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous and liquid electronic semiconductors,” Prog. Semicond.4237–291 (1960).
  16. H. De Raedt, A. D. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett.62, 47–50 (1989). [CrossRef] [PubMed]
  17. P. A. Lee and T. V. Ramakrishnan, “Disordered electronic systems,” Rev. Mod. Phys.57, 287–337 (1985). [CrossRef]
  18. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature446, 52–55 (2007). [CrossRef] [PubMed]
  19. S. Ghosh, B. P. Pal, R. K. Varshney, and G. P. Agrawal, “Transverse localization of light and its dependence on the phase front curvature of the input beam in a disordered optical waveguide lattice,” J. Opt.14, 075701–075705 (2012). [CrossRef]
  20. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett.100, 013906–013909 (2008). [CrossRef] [PubMed]
  21. L. Martin, G. D. Giuseppe, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, A. F. Abouraddy, D. N. Christodoulides, and B. E. A. Saleh, “Anderson localization in optical waveguide arrays with off-diagonal coupling disorder,” Opt. Express19, 13636–3646 (2011). [CrossRef] [PubMed]
  22. S. Ghosh, N. D. Psaila, R. R. Thomson, B. P. Pal, R. K. Varshney, and A. K. Kar, “Ultrafast laser inscribed waveguide lattice in glass for direct observation of transverse localization of light,” Appl. Phys. Lett.100, 101102–101105 (2012). [CrossRef]
  23. O. Abdi, K. C. Wong, T. Hassan, K. J. Peters, and M. J. Kowalsky, “Cleaving of solid single mode polymer optical fiber for strain sensor applications,” Opt. Commun.282, 856–861 (2009). [CrossRef]
  24. W. P. Huang and C. L. Xu, “Simulation of three-dimesional optical waveguides by full-vector beam propagation method,” J. Lightwave Technol.292639–2649 (1993).
  25. J. C. Butcher, Numerical Methods for Ordinary Differential Equations (Wiely, 2008). [CrossRef]
  26. G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron.28, 363–370 (1992). [CrossRef]
  27. A. Szameit, Y. V. Kartashov, P. Zeil, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, V.A. Vysloukh, and L. Torner, “Wave localization at the boundary of disordered photonic lattices,” Opt. Lett.35, 1172–1174 (2010). [CrossRef] [PubMed]
  28. D. M. Jović, Y. S. Kivshar, C. Denz, and M. R. Belić, “Anderson localization of light near boundaries of disordered photonic lattices,” Phys. Rev. A83, 033813–033817 (2011). [CrossRef]
  29. J. M. Ziman, Models of Disorder (Cambridge University Press, 1979).
  30. M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys.18, 222–228 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (383 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited