OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19160–19167

Optical magnetic field enhancement through coupling magnetic plasmons to Tamm plasmons

Hai Liu, Xiudong Sun, Fengfeng Yao, Yanbo Pei, Feng Huang, Haiming Yuan, and Yongyuan Jiang  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 19160-19167 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2309 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a theoretical investigation of the coupling between magnetic plasmons (MPs) and Tamm plasmons (TPs) in a metal–dielectric Bragg reflector (DBR) containing a gold nanowire pair array embedded in the low refractive index layer closest to the metal film. Strong coupling between MPs and TPs is observed, manifested by large anticrossings in the dispersion diagram. It creates a narrow-band hybridized MP mode with a Rabi-type splitting as large as 290 meV. Upon the excitation of this hybridized MP mode, a 2.5-fold enhancement of the magnetic field in the center of nanowire pairs is achieved as compared with the pure MP of the nanowire pairs embedded in a bare DBR structure (without the metal film). This result holds a promising potential application in magnetic nonlinearity and sensors.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: April 23, 2012
Revised Manuscript: July 28, 2012
Manuscript Accepted: July 28, 2012
Published: August 6, 2012

Hai Liu, Xiudong Sun, Fengfeng Yao, Yanbo Pei, Feng Huang, Haiming Yuan, and Yongyuan Jiang, "Optical magnetic field enhancement through coupling magnetic plasmons to Tamm plasmons," Opt. Express 20, 19160-19167 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  4. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007). [CrossRef] [PubMed]
  5. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003). [CrossRef] [PubMed]
  6. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  7. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univeristy Press, Cambridge, 2006).
  8. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009). [CrossRef] [PubMed]
  9. T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett.93(24), 243901 (2004). [CrossRef] [PubMed]
  10. R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett.97(25), 253116 (2010). [CrossRef]
  11. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005). [CrossRef] [PubMed]
  12. T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll, “Magnetic-field enhancement in gold nanosandwiches,” Opt. Express14(18), 8240–8246 (2006). [CrossRef] [PubMed]
  13. S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett.97(8), 083902 (2006). [CrossRef] [PubMed]
  14. R. Ameling and H. Giessen, “Cavity plasmonics: Large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett.10(11), 4394–4398 (2010). [CrossRef] [PubMed]
  15. C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B83(4), 041402 (2011). [CrossRef]
  16. H. Liu, X. D. Sun, Y. B. Pei, F. F. Yao, and Y. Y. Jiang, “Enhanced magnetic response in a gold nanowire pair array through coupling with Bloch surface waves,” Opt. Lett.36(13), 2414–2416 (2011). [CrossRef] [PubMed]
  17. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science326(5952), 550–553 (2009). [CrossRef] [PubMed]
  18. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006). [CrossRef] [PubMed]
  19. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B76(16), 165415 (2007). [CrossRef]
  20. M. E. Sasin, R. P. Seisyan, M. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett.92(25), 251112 (2008). [CrossRef]
  21. H. C. Zhou, G. Yang, K. Wang, H. Long, and P. X. Lu, “Multiple optical Tamm states at a metal-dielectric mirror interface,” Opt. Lett.35(24), 4112–4114 (2010). [CrossRef] [PubMed]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  23. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981). [CrossRef]
  24. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068–1076 (1995). [CrossRef]
  25. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A12(5), 1077–1086 (1995). [CrossRef]
  26. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited