OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19206–19213

Elliptical mirror based imaging with aperture angle greater than π/2

Jian Liu, Cien Zhong, Jiubin Tan, Tong Wang, and Tony Wilson  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 19206-19213 (2012)
http://dx.doi.org/10.1364/OE.20.019206


View Full Text Article

Enhanced HTML    Acrobat PDF (1533 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Elliptical mirror based imaging systems permit aperture angles greater than π/2 to be realized. It is therefore possible to collect part or all of both the forward and backward diffractive fields emitted from single molecules. In this paper we derive rigorous formulae for the image intensity when the single molecule is modeled as a dipole emitter. It is found in theory that the point spread function can be 2.44 times narrower at full-width-half-maximum in the axial direction when using an elliptical mirror with the maximum aperture angle of 2π/3 as compared with a parabolic mirror system with the aperture angle of π/2 whereas the side lobe level is increased by only 0.21% when the dipole is oriented along Z axis.

© 2012 OSA

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(180.5810) Microscopy : Scanning microscopy
(230.4040) Optical devices : Mirrors

ToC Category:
Microscopy

History
Original Manuscript: June 4, 2012
Revised Manuscript: July 24, 2012
Manuscript Accepted: July 24, 2012
Published: August 7, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Jian Liu, Cien Zhong, Jiubin Tan, Tong Wang, and Tony Wilson, "Elliptical mirror based imaging with aperture angle greater than π/2," Opt. Express 20, 19206-19213 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-19206


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol.21(11), 1347–1355 (2003). [CrossRef] [PubMed]
  2. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express16(6), 4154–4162 (2008). [CrossRef] [PubMed]
  3. J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum Press, 2006).
  4. R. Oldenbourg, H. Terada, R. Tiberio, and S. Inoué, “Image sharpness and contrast transfer in coherent confocal microscopy,” J. Microsc.172(1), 31–39 (1993). [CrossRef] [PubMed]
  5. R. Binet, J. Colineau, and J. C. Lehureau, “Short-range synthetic aperture imaging at 633 nm by digital holography,” Appl. Opt.41(23), 4775–4782 (2002). [CrossRef] [PubMed]
  6. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt.44(35), 7621–7629 (2005). [CrossRef] [PubMed]
  7. N. Lue, W. Choi, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion,” Opt. Express16(20), 16240–16246 (2008). [CrossRef] [PubMed]
  8. S. Hell and E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun.93(5-6), 277–282 (1992). [CrossRef]
  9. M. Schrader and S. W. Hell, “4Pi-confocal images with axial superresolution,” J. Microsc.183(2), 110–115 (1996). [CrossRef]
  10. A. Drechsler, M. A. Lieb, C. Debus, A. J. Meixner, and G. Tarrach, “Confocal microscopy with a high numerical aperture parabolic mirror,” Opt. Express9(12), 637–644 (2001). [CrossRef] [PubMed]
  11. D. Zhang, X. Wang, K. Braun, H. J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009). [CrossRef]
  12. S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science283(5408), 1676–1683 (1999). [CrossRef] [PubMed]
  13. T. Ha, T. Enderle, S. Chemla, R. Selvin, and S. Weiss, “Single molecule dynamics studied by polarization modulation,” Phys. Rev. Lett.77(19), 3979–3982 (1996). [CrossRef] [PubMed]
  14. H. P. Lu, L. Xun, and X. S. Xie, “Single-molecule enzymatic dynamics,” Science282(5395), 1877–1882 (1998). [CrossRef] [PubMed]
  15. D. A. V. Bout, W. T. Yip, D. Hu, D. K. Hu, T. M. Swager, and P. F. Barbara, “Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules,” Science277(5329), 1074–1077 (1997). [CrossRef]
  16. L. Fleury, J. M. Segura, G. Zumofen, B. Hecht, and U. P. Wild, “Nonclassical photon statistics in single-molecule fluorescence at room temperature,” Phys. Rev. Lett.84(6), 1148–1151 (2000). [CrossRef] [PubMed]
  17. M. A. Lieb and A. J. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express8(7), 458–474 (2001). [CrossRef] [PubMed]
  18. J. D. Jackson, Classical Electrodynamics, Wiley, 1992.
  19. J. Liu, J. Tan, T. Wilson, and C. Zhong, “Rigorous theory on elliptical mirror focusing for point scanning microscopy,” Opt. Express20(6), 6175–6184 (2012). [CrossRef] [PubMed]
  20. C. J. R. Sheppard and P. Török, “An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy,” Bioimaging5(4), 205–218 (1997). [CrossRef]
  21. T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun.141(5-6), 298–313 (1997). [CrossRef]
  22. J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett.33(7), 681–683 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited