OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19255–19263

Electromechanical tuning of vertically-coupled photonic crystal nanobeams

L. Midolo, S. N. Yoon, F. Pagliano, T. Xia, F. W. M. van Otten, M. Lermer, S. Höfling, and A. Fiore  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 19255-19263 (2012)
http://dx.doi.org/10.1364/OE.20.019255


View Full Text Article

Enhanced HTML    Acrobat PDF (1186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design, the fabrication and the characterization of a tunable one-dimensional (1D) photonic crystal cavity (PCC) etched on two vertically-coupled GaAs nanobeams. A novel fabrication method which prevents their adhesion under capillary forces is introduced. We discuss a design to increase the flexibility of the structure and we demonstrate a large reversible and controllable electromechanical wavelength tuning (> 15 nm) of the cavity modes.

© 2012 OSA

OCIS Codes
(230.4555) Optical devices : Coupled resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: May 24, 2012
Revised Manuscript: July 12, 2012
Manuscript Accepted: July 30, 2012
Published: August 8, 2012

Citation
L. Midolo, S. N. Yoon, F. Pagliano, T. Xia, F. W. M. van Otten, M. Lermer, S. Höfling, and A. Fiore, "Electromechanical tuning of vertically-coupled photonic crystal nanobeams," Opt. Express 20, 19255-19263 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-19255


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006). [CrossRef] [PubMed]
  2. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lon?ar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18(8) 8705–8712 (2010). [CrossRef] [PubMed]
  3. R. Perahia, J. D. Cohen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical zipper cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010). [CrossRef]
  4. X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express 18(21), 22232–22244 (2010). [CrossRef] [PubMed]
  5. M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19(25), 24905–24921 (2011). [CrossRef]
  6. L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007). [CrossRef]
  7. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006). [CrossRef]
  8. L. Midolo, P. J. van Veldhoven, M. A. Dündar, R. Nötzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavities,” Appl. Phys. Lett. 98(21), 211120 (2011). [CrossRef]
  9. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 91(12), 121106 (2009). [CrossRef]
  10. A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008). [CrossRef]
  11. J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light2nd ed. (Princeton Univ. Press, 2008).
  12. COMSOL Multiphysics 3.5a (2009).
  13. F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quant. Electron. 39, 341–352 (2007). [CrossRef]
  14. Y. Xu, J. S. Vuc?kovi?, R. K. Lee, O. J. Painter, A. Scherer, and A. Yariv “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16(3), 465–474 (1999). [CrossRef]
  15. Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003). [CrossRef]
  16. N. Le Thomas and R. Houdré, “Inhibited emission of electromagnetic modes confined in subwavelength cavities,” Phys. Rev. B 84, 035320 (2011). [CrossRef]
  17. R. J. Roark and W. C. Young, Roark’s Formulas for Stress and Strain (McGraw-Hill, 1989). [PubMed]
  18. B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005). [CrossRef]
  19. C. H. Mastrangelo and C. H. Hsu, “Mechanical stability and adhesion of microstructures under capillary forces - Part I: basic theory” J. Microelectromech. Syst. 2(1), 33–43 (1993). [CrossRef]
  20. X. Sun, L. Hu, H. Song, Z. Li, D. Li, H. Jiang, and G. Miao, “Selective wet etching of Al0.7Ga0.3As layer in concentrated HCl solution for peeling off GaAs microtips,” Solid-State Electronics 53, 1032–1035 (2009). [CrossRef]
  21. E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. M. Smith, “Spontaneous emission enhancement of quantum dots in a photonic crystal wire,” Phys. Rev. Lett. 95, 183901 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited