OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19484–19492

Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics

Takashi Arikawa, Xiangfeng Wang, Alexey A. Belyanin, and Junichiro Kono  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 19484-19492 (2012)
http://dx.doi.org/10.1364/OE.20.019484


View Full Text Article

Enhanced HTML    Acrobat PDF (1316 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a giant Faraday effect in an electron plasma in n-InSb probed via polarization-resolved terahertz (THz) time-domain spectroscopy. Polarization rotation angles and ellipticities reach as large as π/2 and 1, respectively, over a wide frequency range (0.3-2.5 THz) at magnetic fields of a few Tesla. The experimental results together with theoretical simulations show its promising ability to construct broadband and tunable THz polarization optics, such as a circular polarizer, half-wave plate, and polarization modulators.

© 2012 OSA

OCIS Codes
(230.2240) Optical devices : Faraday effect
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optical Devices

History
Original Manuscript: June 8, 2012
Revised Manuscript: July 31, 2012
Manuscript Accepted: July 31, 2012
Published: August 10, 2012

Citation
Takashi Arikawa, Xiangfeng Wang, Alexey A. Belyanin, and Junichiro Kono, "Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics," Opt. Express 20, 19484-19492 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-19484


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  2. B. S. Williams, “Terahertz quantum cascade lasers,” Nat. Photonics1(9), 517–525 (2007). [CrossRef]
  3. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics3(12), 732–737 (2009). [CrossRef]
  4. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009). [CrossRef]
  5. J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics4(9), 627–631 (2010). [CrossRef]
  6. M. C. Wanke, E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, “Monolithically integrated solid-state terahertz transceiver,” Nat. Photonics4(8), 565–569 (2010). [CrossRef]
  7. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys.83(2), 543–586 (2011). [CrossRef]
  8. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011). [CrossRef]
  9. T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.79(24), 3917–3919 (2001). [CrossRef]
  10. Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B70(15), 155101 (2004). [CrossRef]
  11. L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem.48(1), 357–386 (1997). [CrossRef] [PubMed]
  12. J. Xu, G. Ramian, P. Savvidis, A. Scopatz, S. J. Allen, K. Plaxco, J. Galan, and R. R. Birge, “Terahertz circular dichroism spectroscopy of biomolecules,” Proc. SPIE5268, 19–26 (2004). [CrossRef]
  13. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express17(1), 136–149 (2009). [CrossRef] [PubMed]
  14. S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Imprinted terahertz artificial dielectric quarter wave plates,” Opt. Express18(12), 12168–12175 (2010). [CrossRef] [PubMed]
  15. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett.31(2), 265–267 (2006). [CrossRef] [PubMed]
  16. R. Shimano, H. Nishimura, and T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys.44(21), L676–L678 (2005). [CrossRef]
  17. N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett.87(22), 221111 (2005). [CrossRef]
  18. J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett.103(2), 023001 (2009). [CrossRef] [PubMed]
  19. Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt. Express14(10), 4486–4493 (2006). [CrossRef] [PubMed]
  20. X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys.6(2), 126–130 (2010). [CrossRef]
  21. T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B84(24), 241307 (2011). [CrossRef]
  22. H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photon. Rev.1(4), 349–368 (2007). [CrossRef]
  23. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B18(3), 313–317 (2001). [CrossRef]
  24. J. Furdyna, “Microwave Faraday rotation in semiconductor plasmas in the high magnetic field limit,” Solid State Commun.5(7), 539–542 (1967). [CrossRef]
  25. A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011). [CrossRef] [PubMed]
  26. E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys.33(3), 1193–1322 (1970). [CrossRef]
  27. B. D. McCombe and R. J. Wagner, “Intraband magneto-optical studies of semiconductors in the far infrared. I” in Advances in Electronics and Electron Physics Volume 37, L. Marton, ed. (Academic Press, 1975), 1–79.
  28. J. Shan, J. I. Dadap, and T. F. Heinz, “Circularly polarized light in the single-cycle limit: The nature of highly polychromatic radiation of defined polarization,” Opt. Express17(9), 7431–7439 (2009). [CrossRef] [PubMed]
  29. A. I. Akhiezer, Plasma Electrodynamics (Elsevier, 1975).
  30. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Course of Theoretical Physics Volume 10 (Pergamon Press, 1981).
  31. S. Adachi, GaAs and Related Materials (World Scientific, 1994).
  32. V. F. Gantmakher and Y. B. Levinson, Carrier scattering in metals and semiconductors. Modern problems in condensed matter sciences Vol. 19. (North-Holland: Amsterdam, 1987).
  33. M. Hoffmann, J. Hebling, H. Hwang, K.-L. Yeh, and K. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B79(16), 161201 (2009). [CrossRef]
  34. D. Molter, G. Torosyan, G. Ballon, L. Drigo, R. Beigang, and J. Léotin, “Step-scan time-domain terahertz magneto-spectroscopy,” Opt. Express20(6), 5993–6002 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited