OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19618–19627

Distributed gain in plasmonic reflectors and its use for terahertz generation

O. Sydoruk, R. R. A. Syms, and L. Solymar  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 19618-19627 (2012)
http://dx.doi.org/10.1364/OE.20.019618


View Full Text Article

Enhanced HTML    Acrobat PDF (1100 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Semiconductor plasmons have potential for terahertz generation. Because practical device formats may be quasi-optical, we studied theoretically distributed plasmonic reflectors that comprise multiple interfaces between cascaded two-dimensional electron channels. Employing a mode-matching technique, we show that transmission through and reflection from a single interface depend on the magnitude and direction of a dc current flowing in the channels. As a result, plasmons can be amplified at an interface, and the cumulative effect of multiple interfaces increases the total gain, leading to plasmonic reflection coefficients exceeding unity. Reversing the current direction in a distributed reflector, however, has the opposite effect of plasmonic deamplification. Consequently, we propose structurally asymmetric resonators comprising two different distributed reflectors and predict that they are capable of terahertz oscillations at low threshold currents.

© 2012 OSA

OCIS Codes
(230.4910) Optical devices : Oscillators
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 23, 2012
Revised Manuscript: June 29, 2012
Manuscript Accepted: July 2, 2012
Published: August 13, 2012

Citation
O. Sydoruk, R. R. A. Syms, and L. Solymar, "Distributed gain in plasmonic reflectors and its use for terahertz generation," Opt. Express 20, 19618-19627 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-19618


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Gómez Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93, 256804 (2004). [CrossRef]
  2. D. Veksler, F. Teppe, A. P. Dmitriev, V. Y. Kachorovskii, W. Knap, and M. S. Shur, “Detection of terahertz radiation in gated two-dimensional structures governed by dc current,” Phys. Rev. B73, 125328 (2006). [CrossRef]
  3. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100, 123901 (2008). [CrossRef] [PubMed]
  4. S. A. Mikhailov, “Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems,” Phys. Rev. B58, 1517–1532 (1998). [CrossRef]
  5. S. Riyopoulos, “THz instability by streaming carriers in high mobility solid-state plasmas,” Phys. Plasmas12, 070704 (2005). [CrossRef]
  6. S. M. Kukhtaruk, “High-frequency properties of systems with drifting electrons and polar optical phonons,” Sem. Phys. Quant. Electr. & Optoelectr.11, 43–49 (2008).
  7. O. Sydoruk, V. Kalinin, and L. Solymar, “Terahertz instability of optical phonons interacting with plasmons in two-dimensional electron channels,” Appl. Phys. Lett.97, 062107 (2010). [CrossRef]
  8. M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field-effect transistor: new mechanism of plasma wave generation by a dc current,” Phys. Rev. Lett.71, 2465–2468 (1993). [CrossRef] [PubMed]
  9. F. J. Crowne, “Contact boundary conditions and the Dyakonov–Shur instability in high electron mobility transistors,” J. Appl. Phys.82, 1242–1254 (1997). [CrossRef]
  10. M. V. Cheremisin and G. G. Samsonidze, “D’yakonov–Shur instability in a ballistic field-effect transistor with a spatially nonuniform channel,” Semiconductors33, 578–585 (1999). [CrossRef]
  11. M. Dyakonov and M. Shur, “Current instability and plasma waves generation in ungated two-dimensional electron layers,” Appl. Phys. Lett.87(11), 111501 (2005). [CrossRef]
  12. O. Sydoruk, R. R. A. Syms, and L. Solymar, “Plasma oscillations and terahertz instability in field-effect transistors with Corbino geometry,” Appl. Phys. Lett.97, 263504 (2010). [CrossRef]
  13. J. Lusakowski, W. Knap, N. Dyakonova, L. Varani, J. Mateos, T. Gonzalez, Y. Roelens, S. Bollaert, A. Cappy, and K. Karpierz, “Voltage tuneable terahertz emission from a ballistic nanometer InGaAs/InAlAs transistor,” J. Appl. Phys.97, 064307 (2005). [CrossRef]
  14. Y. Tsuda, T. Komori, A. El Fatimy, K. Horiike, T. Suemitsu, and T. Otsuji, “Application of plasmon-resonant microchip emitters to broadband terahertz spectroscopic measurement,” J. Opt. Soc. Am. B26, A52–A57 (2009). [CrossRef]
  15. A. El Fatimy, N. Dyakonova, Y. Meziani, T. Otsuji, W. Knap, S. Vandenbrouk, K. Madjour, D. Theron, C. Gaquiere, M. A. Poisson, S. Delage, P. Prystawko, and C. Skierbiszewski, “AlGaN/GaN high electron mobility transistors as a voltage-tunable room temperature terahertz sources,” J. Appl. Phys.107, 024504 (2010). [CrossRef]
  16. T. Otsuji, T. Watanabe, A. El Moutaouakil, H. Karasawa, T. Komori, A. Satou, T. Suemitsu, M. Suemitsu, E. Sano, W. Knap, and V. Ryzhii, “Emission of terahertz radiation from two-dimensional electron systems in semiconductor nano- and heterostructures,” J. Infrared Milli. Terahz. Waves32, 629–645 (2011). [CrossRef]
  17. R. E. Collin, Foundations for Microwave Engineering (Wiley-IEEE Press, Hoboken, New Jersey, 2001). [CrossRef]
  18. A. D. Bresler, G. H. Joshi, and N. Marcuvitz, “Orthogonality properties for modes in passive and active uniform wave guides,” J. Appl. Phys.29, 794–799 (1958). [CrossRef]
  19. R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, “Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities,” Phys. Rev. B76, 035,408 (2007). [CrossRef]
  20. S. Thongrattanasiri, J. Elser, and V. A. Podolskiy, “Quasi-planar optics: computing light propagation and scattering in planar waveguide arrays,” J. Opt. Soc. Am. B26, B102–B110 (2009). [CrossRef]
  21. U. Mackens, D. Heitmann, L. Prager, J. P. Kotthaus, and W. Beinvogl, “Minigaps in the plasmon dispersion of a two-dimensional electron gas with spatially modulated charge density,” Phys. Rev. Lett.53, 1485–1488 (1984). [CrossRef]
  22. Z. Knittl, Optics of Thin Films (Wiley, London, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited