OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20201–20209

Revealing the multi-electron effects in sequential double ionization using classical simulations

Yueming Zhou, Cheng Huang, and Peixiang Lu  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20201-20209 (2012)
http://dx.doi.org/10.1364/OE.20.020201


View Full Text Article

Enhanced HTML    Acrobat PDF (1294 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigated sequential double ionization (SDI) of Ar by the nearly circularly polarized laser pulses with a fully correlated classical ensemble model. The ion momentum distributions of our numerical results at various laser intensities and pulse durations agree well with the experimental results. The experimentally observed multi-electron effects embodied in the joint momentum spectrum of the two electrons is also reproduced by our correlated classical calculations. Interestingly, our calculations show that the angular distribution of the first photoelectron from the trajectories which eventually suffer SDI differs from the distribution of the photoelectrons from above-threshold ionization trajectories. This observation provides additional evidence of multi-electron effects in strong field SDI.

© 2012 OSA

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(260.3230) Physical optics : Ionization
(270.6620) Quantum optics : Strong-field processes

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: July 5, 2012
Manuscript Accepted: August 8, 2012
Published: August 20, 2012

Citation
Yueming Zhou, Cheng Huang, and Peixiang Lu, "Revealing the multi-electron effects in sequential double ionization using classical simulations," Opt. Express 20, 20201-20209 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20201


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett.71, 1994–1997 (1993). [CrossRef] [PubMed]
  2. K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett.70, 1599–1602 (1993). [CrossRef] [PubMed]
  3. Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature405, 658–661 (2000). [CrossRef] [PubMed]
  4. B. Walker, B. Sheehy, L. F. Dimauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionizaiton of helium,” Phys. Rev. Lett.73, 1227–1230 (1994). [CrossRef] [PubMed]
  5. B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision mechanisms in nonsequential strong field double ionizaion of Ar: the role of excitation tunneling,” Phys. Rev. Lett.87, 043003 (2001). [CrossRef] [PubMed]
  6. M. Weckenbrock, D. Zeidler, A. Staudte, Th. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P. B. Corkum, and R. Dörner, “Fully differential rates for femtosecond multiphoton double ionization of neon,” Phys. Rev. Lett.92, 213002 (2004). [CrossRef] [PubMed]
  7. A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, “Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms,” Phys. Rev. Lett.93, 253001 (2004). [CrossRef]
  8. M. Lein, E. K. U. Gross, and V. Engel, “Intense-field double ionization of helium: identifying the mechanism,” Phys. Rev. Lett.85, 4707–4710 (2000). [CrossRef] [PubMed]
  9. A. Staudte, C. Ruiz, M. Schöffler, S. Schössler, D. Zeidler, Th. Weber, M. Meckel, D. M. Villeneuve, P. B. Corkum, A. Becker, and R. Dörner, “Binary and recoil collisions in strong field double ionization of helium,” Phys. Rev. Lett.99, 263002 (2007). [CrossRef]
  10. S. L. Haan, L. Breen, A. Karim, and J. H. Eberly, “Variable time lag and backward ejection in full-dimension analysis of strong field double ionization,” Phys. Rev. Lett.97, 103008 (2006). [CrossRef] [PubMed]
  11. Y. Zhou, C. Huang, A. Tong, Q. Liao, and P. Lu, “Correlated electron dynamics in nonsequential double ionization by orthogonal two-color laser pulses,” Opt. Express19, 2301–2308 (2011). [CrossRef] [PubMed]
  12. Y. Zhou, C. Huang, Q. Liao, W. Hong, and P. Lu, “Control the revisit time of the electron wave packet,” Opt. Lett.36, 2758–2760 (2011). [CrossRef] [PubMed]
  13. A. Becker, R. Dörner, and R. Moshammer,“Multiple fragmentation of atoms in femtosecond laser pulses,” J. Phys. B38, S753–S772 (2005). [CrossRef]
  14. Q. Liao, Y. Zhou, C. Huang, and P. Lu, “Multiphoton Rabi oscillations of correlated electrons in strong-field nonsequential double ionization,” New J. Phys.14, 013001 (2012). [CrossRef]
  15. B. Chang, P. R. Bolton, and D. N. Fittinghoff, “Closed-form solutions for the production of ions in the collisionless ionization of gases by intense lasers,” Phys. Rev. A47, 4193–4203 (1993). [CrossRef] [PubMed]
  16. K. I. Dimitriou, S. Yoshida, J. Burgdöfer, H. Shimada, H. Oyama, and Y. Yamazaki, “Momentum distribution of multiply charged ions produced by intense (50–70-PW/cm2) lasers,” Phys. Rev. A75, 013418 (2007). [CrossRef]
  17. N. I. Shvetsov-Shilovski, A. M. Sayler, T. Rathje, and G. G. Paulus, “Momentum distributions of sequential ionization,” Phys. Rev. A83, 033401 (2011). [CrossRef]
  18. A. Fleischer, H. J. Wörner, L. Arissian, L. R. Liu, M. Meckel, A. Rippert, R. Dörner, D. M. Villeneuve, P. B. Corkum, and A. Staudte, “Probing angular correlations in sequential double ionization,” Phys. Rev. Lett.107, 113003 (2011). [CrossRef] [PubMed]
  19. A. N. Pfeiffer, C. Cirelli, M. Smolarski, R. Döner, and U. Keller, “Timing the release in sequential double ionization,” Nature Phys.7, 428–433 (2011). [CrossRef]
  20. A. N. Pfeiffer, C. Cirelli, M. Smolarski, X. Wang, J. H. Eberly, R. Döner, and U. Keller, “Breakdown of the independent electron approximation in sequential double ionization,” New. J. Phys.13, 093008 (2011). [CrossRef]
  21. S. L. Haan, L. Breen, A. Karim, and J. H. Eberly, “Recollision dynamics and time delay in strong-field double ionization,” Opt. Express15, 767–778 (2007). [CrossRef] [PubMed]
  22. Y. Zhou, Q. Liao, and P. Lu, “Mechanism for high-energy electrons in nonsequential double ionization below the recollision-excitation threshold,” Phys. Rev. A80, 023412 (2009). [CrossRef]
  23. Y. Zhou, Q. Liao, and P. Lu, “Complex sub-laser-cycle electron dynamics in strong-field nonsequential triple ionizaion,” Opt. Express18, 16025–16034 (2010). [CrossRef] [PubMed]
  24. Phay J. Ho, R. Panfili, S. L. Haan, and J. H. Eberly, “Nonsequential double ionization as a completely classical photoelectric effect,” Phys. Rev. Lett.94, 093002 (2005). [CrossRef] [PubMed]
  25. Y. Zhou, Q. Liao, and P. Lu, “Asymmetric electron energy sharing in strong-field double ionization of helium,” Phys. Rev. A82, 053402 (2010). [CrossRef]
  26. Y. Zhou, C. Huang, Q. Liao, and P. Lu, “Classical simulations including electron correlations for sequential double ionization,” Phys. Rev. Lett.109, 053004 (2012). [CrossRef]
  27. A. N. Pfeiffer, C. Cirelli, M. Smolarski, D. Dimitrovski, M. Abu-samha, L. B. Madsen, and U. Keller, “Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms,” Nature Phys.8, 76–80 (2011). [CrossRef]
  28. N. I. Shvetsov-Shilovski, D. Dimitrovski, and L. B. Madsen, “Ionization in elliptically polarized pulses: Multi-electron polarization effects and asymmetry of photoelectron momentum distributions,” Phys. Rev. A85, 023428 (2012). [CrossRef]
  29. C. L. Kirschbaum and L. Wilets, “Classical many-body model for atomic collisions incorporating the Heisenberg and Pauli principles,” Phys. Rev. A21, 834–841 (1980). [CrossRef]
  30. D. Zajfman and D. Maor, “Heisenberg core in classical-trajectory monte carlo calculations of ionization and charge exchange,” Phys. Rev. Lett.56, 320–323 (1986). [CrossRef] [PubMed]
  31. J. S. Cohen, “Quasiclassical-trajectory Monte Carlo methods for collisions with two-electron atoms,” Phys. Rev. A54, 573–586 (1996). [CrossRef] [PubMed]
  32. W. A. Beck and L. Wilets, “Semiclassical description of proton stopping by atomic and molecular targets,” Phys. Rev. A55, 2821–2829 (1997). [CrossRef]
  33. C. M. Maharjan, A. S. Alnaser, X. M. Tong, B. Ulrich, P. Ranitovic, S. Ghimire, Z. Chang, I. V. Litvinyuk, and C. L. Cocke, “Momentum imaging of doubly charged ions of Ne and Ar in the sequential ionization region,” Phys. Rev. A72, 041403R(2005). [CrossRef]
  34. X. Wang and J. H. Eberly, “Effects of elliptical polarization on strong-field short-pulse double ionization,” Phys. Rev. Lett.103, 103007 (2009). [CrossRef] [PubMed]
  35. S. V. Popruzhenko, G. G. Paulus, and D. Bauer, “Coulomb-corrected quantum trajectories in strong-field ionization,” Phys. Rev. A77, 053409 (2008). [CrossRef]
  36. S. P. Goreslavski, G. G. Paulus, S. V. Popruzhenko, and N. I. Shvetsov-Shilovski, “Coulomb asymmetry in above-threshold ionization,” Phys. Rev. Lett.93, 233002 (2004). [CrossRef] [PubMed]
  37. A. Jaroń, J. Z. Kamińskia, and F. Ehlotzky, “Asymmetries in the angular distributions of above threshold ionization in an elliptically polarized laser field,” Opt. Commun.163, 115–121 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited