OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20222–20227

Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion

Wei Li, Li Xian Wang, Werner Hofmann, Ning Hua Zhu, and Dieter Bimberg  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 20222-20227 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (946 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a novel scheme to generate ultra-wideband (UWB) triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion. First a phase-modulated Gaussian doublet pulse is generated by four-wave mixing in a highly nonlinear fiber. Then an UWB triplet pulse is generated by generating the first-order derivative of the phase-modulated Gaussian doublet pulse using an optical filter serving as a frequency discriminator. By locating the optical signal at the linear slope of the optical filter, the phase modulated Gaussian doublet pulse is converted to an intensity-modulated UWB triplet pulse which well satisfies the Federal Communications Commission spectral mask requirements, even in the extremely power-restricted global positioning system band.

© 2012 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Nonlinear Optics

Original Manuscript: July 11, 2012
Revised Manuscript: August 14, 2012
Manuscript Accepted: August 15, 2012
Published: August 20, 2012

Wei Li, Li Xian Wang, Werner Hofmann, Ning Hua Zhu, and Dieter Bimberg, "Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion," Opt. Express 20, 20222-20227 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003). [CrossRef]
  2. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007). [CrossRef]
  3. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett.31(21), 3083–3085 (2006). [CrossRef] [PubMed]
  4. S. Pan and J. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett.34(2), 160–162 (2009). [CrossRef] [PubMed]
  5. Q. Wang and J. Yao, “An electrically switchable optical ultrawideband pulse generator,” J. Lightwave Technol.25(11), 3626–3633 (2007). [CrossRef]
  6. F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin, “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express18(15), 15870–15875 (2010). [CrossRef] [PubMed]
  7. B. Zhang, X. Zhao, D. Parekh, Y. Yue, W. Hofmann, M. C. Amann, C. J. Chang-Hasnain, and A. E. Willner, “Reconfigurable multifunctional operation using optical injection-locked vertical-cavity surface-emitting lasers,” J. Lightwave Technol.27(15), 2958–2963 (2009). [CrossRef]
  8. Y. Yu, J. Dong, X. Li, and X. Zhang, “Ultra-wideband generation based on cascaded Mach-Zehnder modulators,” IEEE Photon. Technol. Lett.23(23), 1754–1756 (2011). [CrossRef]
  9. B. Luo, J. Dong, Y. Yu, T. Yang, and X. Zhang, “Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop,” Opt. Lett.37(12), 2217–2219 (2012). [CrossRef] [PubMed]
  10. Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett.42(22), 1304–1305 (2006). [CrossRef]
  11. J. Zheng, N. Zhu, L. Wang, J. Liu, and H. Liang, “Photonic generation of ultrawideband (UWB) pulse with tunable notch-band behavior,” IEEE Photon. J.4(3), 657–663 (2012). [CrossRef]
  12. C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 μm,” IEEE J. Sel. Top. Quantum Electron.15(3), 749–756 (2009). [CrossRef]
  13. S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett.36(12), 2363–2365 (2011). [CrossRef] [PubMed]
  14. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express17(7), 5023–5032 (2009). [CrossRef] [PubMed]
  15. E. Zhou, X. Xu, K.-S. Lui, and K. K.-Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010). [CrossRef]
  16. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Flexible monocycle UWB generation for reconfigurable access networks,” IEEE Photon. Technol. Lett.22(12), 878–880 (2010). [CrossRef]
  17. S. Wang, H. Chen, M. Xin, M. Chen, and S. Xie, “Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture,” Opt. Lett.34(20), 3092–3094 (2009). [CrossRef] [PubMed]
  18. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  19. F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett.45(24), 1247–1249 (2009). [CrossRef]
  20. W. Li, N. H. Zhu, L. X. Wang, J. S. Wang, J. G. Liu, Y. Liu, X. Q. Qi, L. Xie, W. Chen, X. Wang, and W. Han, “True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light,” Opt. Express19(13), 12312–12324 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited