OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20266–20275

Optical characteristics of silicon nanowires grown from tin catalyst layers on silicon coated glass

Jeremy Ball, Anthony Centeno, Budhika G. Mendis, H. S. Reehal, and Neil Alford  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 20266-20275 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3824 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical characteristics of silicon nanowires grown on Si layers on glass have been modeled using the FDTD (Finite Difference Time Domain) technique and compared with experimental results. The wires were grown by the VLS (vapour-liquid-solid) method using Sn catalyst layers and exhibit a conical shape. The resulting measured and modeled absorption, reflectance and transmittance spectra have been investigated as a function of the thickness of the underlying Si layer and the initial catalyst layer, the latter having a strong influence on wire density. High levels of absorption (>90% in the visible wavelength range) and good agreement between the modeling and experiment have been observed when the nanowires have a relatively high density of ~4 wires/µm2. The experimental and modeled results diverge for samples with a lower density of wire growth. The results are discussed along with some implications for solar cell fabrication.

© 2012 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(310.6860) Thin films : Thin films, optical properties
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

Original Manuscript: April 24, 2012
Revised Manuscript: June 29, 2012
Manuscript Accepted: July 6, 2012
Published: August 20, 2012

Jeremy Ball, Anthony Centeno, Budhika G. Mendis, H. S. Reehal, and Neil Alford, "Optical characteristics of silicon nanowires grown from tin catalyst layers on silicon coated glass," Opt. Express 20, 20266-20275 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. Rep.62(6), 175–189 (2008). [CrossRef]
  2. V. Schmidt, J. V. Wittemann, and U. Gösele, “Growth, thermodynamics, and electrical properties of silicon nanowires,” Chem. Rev.110(1), 361–388 (2010). [CrossRef] [PubMed]
  3. B. Tian, T. J. Kempa, and C. M. Lieber, “Single nanowire photovoltaics,” Chem. Soc. Rev.38(1), 16–24 (2008). [CrossRef] [PubMed]
  4. Z. Zhong, C. Yang, and C. M. Lieber, “Silicon nanowires and nanowire heterostructures,” in Nanosilicon, V. Kumar, ed. (Elsevier 2007), pp.176–216.
  5. M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, B. D. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci.3(8), 1037–1041 (2010). [CrossRef]
  6. D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho, and X. Zheng, “Hybrid Si microwire and planar solar cells: passivation and characterization,” Nano Lett.11(7), 2704–2708 (2011). [CrossRef] [PubMed]
  7. O. Gunawan and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells,” Sol. Energy Sol. Cell.93(8), 1388–1393 (2009). [CrossRef]
  8. B. Eisenhawer, S. Sensfuss, V. Sivakov, M. Pietsch, G. Andrä, and F. Falk, “Increasing the efficiency of polymer solar cells by silicon nanowires,” Nanotechnology22(31), 315401 (2011). [CrossRef] [PubMed]
  9. Z. Pei, S. Thiyagu, M.-S. Jhong, W.-S. Hsieh, S.-J. Cheng, M.-W. Ho, Y.-H. Chen, J.-C. Liu, and C.-M. Yeh, “An amorphous silicon random nanocone/polymer hybrid solar cell,” Sol. Energy Mater. Sol. Cells95(8), 2431–2436 (2011). [CrossRef]
  10. C. L. Cheung, R. J. Nikolic, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology17(5), 1339–1343 (2006). [CrossRef]
  11. P. Y. Yoon, Y. A. Yuwen, C. E. Kendrick, G. D. Barber, N. J. Podraza, J. M. Redwing, T. E. Mallouk, C. R. Wronski, and T. S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett.96(21), 213503 (2010). [CrossRef]
  12. B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self assembled micro/nano structures,” Prog. Photovolt. Res. Appl.19(6), 631–639 (2011). [CrossRef]
  13. D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells95(1), 215–218 (2011). [CrossRef]
  14. H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett.98(15), 151116 (2011). [CrossRef]
  15. G. Jia, M. Steglich, I. Sill, and F. Falk, “Core-shell heterojunction solar cells on silicon nanowires arrays,” Sol. Energy Mater. Sol. Cells96, 226–230 (2012). [CrossRef]
  16. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett.4(5), 89–90 (1964). [CrossRef]
  17. K. A. Dick, “A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au –assisted iii-v nanowires,” Prog. Cryst. Growth Charact. Mater.54(3-4), 138–173 (2008). [CrossRef]
  18. V. Schmidt, J. V. Wittemann, and U. Gösele, “Growth, thermodynamics, and electrical properties of silicon nanowires,” Chem. Rev.110(1), 361–388 (2010). [CrossRef] [PubMed]
  19. W. M. Bullis, “Properties of gold in silicon,” Solid-State Electron.9(2), 143–168 (1966). [CrossRef]
  20. M. Jeon and K. Kamisako, “Synthesis and characterization of silicon nanowires using tin catalyst for solar cells application,” Mater. Lett.63(9-10), 777–779 (2009). [CrossRef]
  21. V. A. Nebol’sin and A. A. Shchetinin, “Role of surface energy in the vapor-liquid-solid growth of silicon,” Inorg. Mater.39(9), 899–903 (2003). [CrossRef]
  22. M. Jeon and K. Kamisako, “Synthesis of silicon nanowires after hydrogen radical treatment,” Mater. Lett.62(23), 3903–3905 (2008). [CrossRef]
  23. S. Rathi, B. N. Jariwala, J. D. Beach, P. Stradins, P. C. Taylor, X. Weng, Y. Ke, J. M. Redwing, S. Argarwal, and R. T. Collins, “Tin catalyzed plasma-assisted growth of silicon nanowires,” J. Phys. Chem.115, 3833–3839 (2011).
  24. M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical properties of crystalline-amorphous core-shell silicon nanowires,” Nano Lett.10(10), 4093–4098 (2010). [CrossRef] [PubMed]
  25. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  26. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008). [CrossRef] [PubMed]
  27. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  28. W. F. Liu, J. I. Oh, and W. Z. Shen, “Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires,” Nanotechnology22(12), 125705 (2011). [CrossRef] [PubMed]
  29. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  30. H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett.35(20), 3378–3380 (2010). [CrossRef] [PubMed]
  31. L. Yu, B. O’Donnell, J. P. Alet, and P. Roca i Cabarrocas, “All-in-situ fabrication and characterization of silicon nanowires on TCO/glass substrates for photovoltaic application,” Sol. Energy Mater. Sol. Cells94(11), 1855–1859 (2010). [CrossRef]
  32. Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology19(29), 295203 (2008). [CrossRef] [PubMed]
  33. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007). [CrossRef]
  34. L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. Leboeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophoton.1(1), 013552–013562 (2007). [CrossRef]
  35. J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett.95(3), 033102 (2009). [CrossRef]
  36. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  37. A. Centeno, J. Breeze, B. Ahmed, H. S. Reehal, and N. Alford, “Scattering of light into silicon by spherical and hemispherical silver nanoparticles,” Opt. Lett.35(1), 76–78 (2010). [CrossRef] [PubMed]
  38. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  39. L. Yu, F. Fortuna, B. O’Donnell, G. Patriache, and P. Roca i Cabarrocas, “Stability and evolution of low surface-tension metal catalyzed growth of silicon nanowires,” Appl. Phys. Lett.98(12), 123113 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited