OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20494–20505

Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber

J.W. Nicholson, L. Meng, J.M. Fini, R.S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20494-20505 (2012)
http://dx.doi.org/10.1364/OE.20.020494


View Full Text Article

Enhanced HTML    Acrobat PDF (2073 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We perform detailed measurements of the higher-order-mode content of a low-loss, hollow-core, photonic-bandgap fiber. Mode content is characterized using Spatially and Spectrally resolved (S2) imaging, revealing a variety of phenomena. Discrete mode scattering to core-guided modes are measured at small relative group-delays. At large group delays a continuum of surface modes and core-guided modes can be observed. The LP11 mode is observed to split into four different group delays with different orientations, with the relative orientations preserved as the mode propagates through the fiber. Cutback measurements allow for quantification of the loss of different individual modes. The behavior of the modes in the low loss region of the fiber is compared to that in a high loss region of the fiber. Finally, a new measurement technique is introduced, the sliding-window Fourier transform of high-resolution transmission spectra of hollow-core fibers, which displays the dependence of HOM content on both wavelength and group delay. This measurement is used to illustrate the HOM content as function of coil diameter.

© 2012 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 23, 2012
Revised Manuscript: August 17, 2012
Manuscript Accepted: August 20, 2012
Published: August 22, 2012

Citation
J.W. Nicholson, L. Meng, J.M. Fini, R.S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, "Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber," Opt. Express 20, 20494-20505 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallagher, and K. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express13(16), 6153–6159 (2005). [CrossRef] [PubMed]
  2. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express13(1), 236–244 (2005). [CrossRef] [PubMed]
  3. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express16(6), 4337–4346 (2008). [CrossRef] [PubMed]
  4. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. S. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express16(22), 17972–17981 (2008). [CrossRef] [PubMed]
  5. O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete Modal Decomposition for Optical Waveguides,” Phys. Rev. Lett.94(14), 143902 (2005). [CrossRef] [PubMed]
  6. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express16(10), 7233–7243 (2008). [CrossRef] [PubMed]
  7. J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the Modal Content of Large-Mode-Area Fibers” IEEE J. Sel. Top. Quantum Electron.15, 61–70 (2009).
  8. A. M. DeSantolo, D. J. DiGiovanni, F. V. DiMarcello, J. Fini, M. Hassan, L. Meng, E. M. Monberg, J. W. Nicholson, R. M. Ortiz, and R. S. Windeler, “High resolution S2 imaging of photonic bandgap fiber” CLEO 2011, paper CFM4.
  9. D. M. Nguyen, S. Blin, T. N. Nguyen, S. D. Le, L. Provino, M. Thual, and T. Chartier, “Modal decomposition technique for multimode fibers,” Appl. Opt.51(4), 450–456 (2012). [CrossRef] [PubMed]
  10. M.-J. Li, J. A. West, and K. W. Koch, “Modeling Effects of Structural Distortions on Air-Core Photonic Bandgap Fibers,” J. Lightwave Technol.25(9), 2463–2468 (2007). [CrossRef]
  11. F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, Advances and Limitations in the Modeling of Fabricated Photonic Bandgap Fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFC2.
  12. J. M. Fini and J. W. Nicholson, “Bend-induced changes in group delay and comparison with S^2 mode-content measurements,” CLEO 2009 paper CWD5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited