OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20506–20515

Second-order nonlinear silicon-organic hybrid waveguides

L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20506-20515 (2012)
http://dx.doi.org/10.1364/OE.20.020506


View Full Text Article

Enhanced HTML    Acrobat PDF (1808 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a concept for second-order nonlinear optical processes in silicon photonics. A silicon-organic hybrid (SOH) double slot waveguide is dispersion-engineered for mode phase-matching (MPM). The proposed waveguide enables highly efficient nonlinear processes in the mid-IR range. With a cladding nonlinearity of χ(2) = 230 pm/V and 20 dBm pump power at a CW wavelength of 1550 nm, we predict a gain of 14.7 dB/cm for a 3100 nm signal. The suggested structure enables for the first time efficient second-order nonlinear optical mixing in silicon photonics with standard technology.

© 2012 OSA

OCIS Codes
(130.3060) Integrated optics : Infrared
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Integrated Optics

History
Original Manuscript: June 6, 2012
Revised Manuscript: July 23, 2012
Manuscript Accepted: July 24, 2012
Published: August 22, 2012

Citation
L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, "Second-order nonlinear silicon-organic hybrid waveguides," Opt. Express 20, 20506-20515 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20506


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  2. M. Ebrahim-Zadeh and I. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2007).
  3. A. Bogoni, X. X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett.35(23), 3955–3957 (2010). [CrossRef] [PubMed]
  4. A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in 1.2-1.7 µm communication window using OPA in PPLN waveguides,” Electron. Lett.35(9), 731–733 (1999). [CrossRef]
  5. S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nat. Photonics4(8), 553–556 (2010). [CrossRef]
  6. A. B. Sugiharto, C. M. Johnson, H. B. De Aguiar, L. Alloatti, and S. Roke, “Generation and application of high power femtosecond pulses in the vibrational fingerprint region,” Appl. Phys. B-lasers and Optics91(2), 315–318 (2008). [CrossRef]
  7. S. V. Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt.6(6), 569–584 (2004). [CrossRef]
  8. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010). [CrossRef]
  9. X. P. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Assefa, Y. A. Vlasov, and W. M. J. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express19(8), 7778–7789 (2011). [CrossRef] [PubMed]
  10. A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 mu m,” Appl. Phys. Lett.97(21), 213501 (2010). [CrossRef]
  11. F. X. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express19(16), 15212–15220 (2011). [CrossRef] [PubMed]
  12. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010). [CrossRef]
  13. R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express19(6), 5579–5586 (2011). [CrossRef] [PubMed]
  14. V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, “Demonstration of a mid-infrared silicon Raman amplifier,” Opt. Express15(22), 14355–14362 (2007). [CrossRef] [PubMed]
  15. M. M. Milosevic, P. S. Matavulj, P. Y. Y. Yang, A. Bagolini, and G. Z. Mashanovich, “Rib waveguides for mid-infrared silicon photonics,” JOSA B26, 1760–1766 (2009).
  16. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006). [CrossRef] [PubMed]
  17. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006). [CrossRef] [PubMed]
  18. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19(26), B146–B153 (2011). [CrossRef] [PubMed]
  19. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011). [CrossRef] [PubMed]
  20. N. K. Hon, K. K. Tsia, D. R. Solli, and B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett.94(9), 091116 (2009). [CrossRef]
  21. I. Avrutsky and R. Soref, “Phase-matched sum frequency generation in strained silicon waveguides using their second-order nonlinear optical susceptibility,” Opt. Express19(22), 21707–21716 (2011). [CrossRef] [PubMed]
  22. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express19(18), 17212–17219 (2011). [CrossRef] [PubMed]
  23. T. W. Baehr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems: A platform for practical nonlinear optics,” J. Phys. Chem. C112(21), 8085–8090 (2008). [CrossRef]
  24. J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009). [CrossRef]
  25. M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron.14(5), 1298–1311 (2008). [CrossRef]
  26. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics1(3), 180–185 (2007). [CrossRef]
  27. GigOptix, www.gigoptix.com .
  28. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express19(12), 11841–11851 (2011). [CrossRef] [PubMed]
  29. M. Zhu, H. Liu, X. Li, N. Huang, Q. Sun, J. Wen, and Z. Wang, “Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides,” Opt. Express20(14), 15899–15907 (2012). [CrossRef] [PubMed]
  30. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998). [CrossRef]
  31. E. D. Palik, Handbook of optical constants of solids (Academic Press, 1997).
  32. E. Jordana, J. M. Fedeli, P. Lyan, J. P. Colonna, P. Gautier, N. Daldosso, L. Pavesi, Y. Lebour, P. Pellegrino, B. Garrido, J. Blasco, F. Cuesta-Soto, and P. Sanchis, “Deep-UV lithography fabrication of slot waveguides and sandwiched waveguides for nonlinear applications,” 2007 4th IEEE Int. Conf. Group IV Photon., 217–219 (2007).
  33. C. Vassallo, Optical Waveguide Concepts (Elsevier, 1991).
  34. R. Dinu, Dan Jin, Guomin Yu, Baoquan Chen, Diyun Huang, A. Hui Chen, E. Barklund, C. Miller, Wei, and J. Vemagiri, “Environmental stress testing of electro-optic polymer modulators,” J. Lightwave Technol.27(11), 1527–1532 (2009). [CrossRef]
  35. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett.90(19), 191104 (2007). [CrossRef]
  36. L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin, B. E. Eichinger, B. H. Robinson, A. K. Y. Jen, and R. M. Overney, “Systematic nanoengineering of soft matter organic electro-optic materials,” Chem. Mater.23(3), 430–445 (2011). [CrossRef]
  37. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009). [CrossRef]
  38. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  39. T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express17(20), 17357–17368 (2009). [CrossRef] [PubMed]
  40. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt.46(33), 8118–8133 (2007). [CrossRef] [PubMed]
  41. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron.12(6), 1306–1321 (2006). [CrossRef]
  42. R. Ding, T. Baehr-Jones, W. J. Kim, X. G. Xiong, R. Bojko, J. M. Fedeli, M. Fournier, and M. Hochberg, “Low-loss strip-loaded slot waveguides in Silicon-on-Insulator,” Opt. Express18(24), 25061–25067 (2010). [CrossRef] [PubMed]
  43. R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at lambda = 1550 nm,” Opt. Express15(26), 17967–17972 (2007). [CrossRef] [PubMed]
  44. J. Leuthold, J. Eckner, E. Gamper, P. A. Besse, and H. Melchior, “Multimode interference couplers for the conversion and combining of zero- and first-order modes,” J. Lightwave Technol.16(7), 1228–1239 (1998). [CrossRef]
  45. B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular Assembly for third-order integrated nonlinear optics,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4584–4587 (2008). [CrossRef]
  46. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express15(10), 5976–5990 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited