OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 20808–20813

Co-polymer clad design for high performance athermal photonic circuits

Vivek Raghunathan, Jose Luis Yagüe, Jingjing Xu, Jurgen Michel, Karen K. Gleason, and Lionel C. Kimerling  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 20808-20813 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (735 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ubiquitous, low power consumption and high bandwidth density communication will require passive athermal optical filters for WDM transceivers in Si-CMOS architecture. Two silicon-polymer composite structures, deposited using initiated chemical vapor deposition (iCVD), poly(perfluorodecyl acrylate) (pPFDA) and poly(perfluorodecyl acrylate-co-divinyl benzene) p(PFDA-co-DVB), are analyzed as candidates for thermal compensation. The addition of DVB to a fluorinated acrylate backbone reduces the C-F bond density, increases the density in the copolymer and thereby increases refractive index. The addition of DVB also increases the volume expansion coefficient of the copolymer, resulting in an increased thermo-optic (TO) coefficient for the copolymer system. The increased index and TO coefficient of the co-polymer gives improved bend loss, footprint and FSR performance for athermal silicon photonic circuits.

© 2012 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3130) Integrated optics : Integrated optics materials
(160.5470) Materials : Polymers
(160.6840) Materials : Thermo-optical materials
(230.5750) Optical devices : Resonators
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Integrated Optics

Original Manuscript: July 10, 2012
Revised Manuscript: August 13, 2012
Manuscript Accepted: August 16, 2012
Published: August 27, 2012

Vivek Raghunathan, Jose Luis Yagüe, Jingjing Xu, Jurgen Michel, Karen K. Gleason, and Lionel C. Kimerling, "Co-polymer clad design for high performance athermal photonic circuits," Opt. Express 20, 20808-20813 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002). [CrossRef]
  2. T. A. Tumolilo and P. R. Ashley, “Fabrication and design considerations for multilevel active polymeric devices,” Proc. SPIE-Int Soc.Opt. Eng.2025, 507–515 (1993).
  3. L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun.137(4-6), 239–243 (1997). [CrossRef]
  4. M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in Custom Integrated Circuits Conference (Institute of Electrical and Electronics Engineers, 2011), 978–1-4577–0233–5/11.
  5. V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. C. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express18(17), 17631–17639 (2010). [CrossRef] [PubMed]
  6. J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol.25(8), 2236–2243 (2007). [CrossRef]
  7. J. M. Lee, D. J. Kim, G. H. Kim, O. K. Kwon, K. J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguides using slot structure,” Opt. Express16(3), 1645–1652 (2008). [CrossRef]
  8. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett.20(11), 882–885 (2008). [CrossRef]
  9. V. Raghunathan, J. Hu, W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal silicon ring resonators,” in Conference on Integrated Photonic Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2010), paper IMC5.
  10. V. Raghunathan, T. Izuhara, J. Michel, and L. C. Kimerling, “Stability of polymer-dielectric bi-layers for athermal silicon photonics,” Opt. Express20(14), 16059–16066 (2012). [CrossRef] [PubMed]
  11. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express17(17), 14627–14633 (2009). [CrossRef] [PubMed]
  12. M. Gupta and K. K. Gleason, “Initiated chemical vapor deposition of poly(1H,1H,2H,2H-perfluorodecyl acrylate) thin films,” Langmuir22(24), 10047–10052 (2006). [CrossRef] [PubMed]
  13. W. Groh and A. Zimmermann, “What is the lowest refractive index of an organic polymer,” Macromolecules24(25), 6660–6663 (1991). [CrossRef]
  14. K. K. S. Lau and K. K. Gleason, “Initiated chemical vapor deposition (iCVD) of Poly(alkyl acrylates): an experimental study,” Macromolecules39(10), 3688–3694 (2006). [CrossRef]
  15. K. K. S. Lau and K. K. Gleason, “Initiated chemical vapor deposition (iCVD) of Poly(alkyl acrylates): a kinetic model,” Macromolecules39(10), 3695–3703 (2006). [CrossRef]
  16. L. H. Lee and K. K. Gleason, “Cross-linked organic sacrificial material for air gap formation by initiated chemical vapor deposition,” J. Electrochem. Soc.155(4), G78–G86 (2008). [CrossRef]
  17. L. Junyan, H. Ling, and Z. Yuansuo, “Synthesis and property investigation of three core-shell fluoroacrylate copolymer latexes,” J. Appl. Polym. Sci.112(3), 1615–1621 (2009). [CrossRef]
  18. C. D. Petruczok, Department of Chemical Engineering, Massachussetts Institute of Technology, Cambridge, MA 02139 and K. K. Gleason have submitted a manuscript to Advanced Materials called “Initiated chemical vapor deposition (iCVD) method for patterning polymer and metal microstructures on curved substrates.”
  19. D. O. W. Chemical Corporate, “Specialty Monomers- DVB,” http://www.dow.com/specialtymonomers/prod/divin.htm .
  20. MATBASE, “Commodity polymers- PMMA,” http://www.matbase.com/material/polymers/commodity/pmma/properties .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited