OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 20908–20919

Modeling and correction of distorted two-dimensional Fourier transform spectra from pixelated pulse shaping devices

Erik M. Grumstrup and Niels H. Damrauer  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 20908-20919 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two-dimensional Fourier transform spectra of a three level model system are simulated using a non-perturbative density matrix formalism. The electric field distortions resultant from using pixelated pulse shaping devices to produce phase-locked pulse pairs are modeled and the effects on the recovered spectra are examined. To minimize spectral distortions, a temporal filtering scheme is employed which eliminates contributions from spurious sample polarizations.

© 2012 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(300.0300) Spectroscopy : Spectroscopy

ToC Category:

Original Manuscript: June 7, 2012
Revised Manuscript: August 7, 2012
Manuscript Accepted: August 21, 2012
Published: August 28, 2012

Erik M. Grumstrup and Niels H. Damrauer, "Modeling and correction of distorted two-dimensional Fourier transform spectra from pixelated pulse shaping devices," Opt. Express 20, 20908-20919 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett.297(3-4), 307–313 (1998). [CrossRef]
  2. I. Stiopkin, T. Brixner, M. Yang, and G. R. Fleming, “Heterogeneous exciton dynamics revealed by two-dimensional optical spectroscopy,” J. Phys. Chem. B110(40), 20032–20037 (2006). [CrossRef] [PubMed]
  3. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007). [CrossRef] [PubMed]
  4. D. Zigmantas, E. L. Read, T. Mančal, T. Brixner, A. T. Gardiner, R. J. Cogdell, and G. R. Fleming, “Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A.103(34), 12672–12677 (2006). [CrossRef] [PubMed]
  5. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003). [CrossRef] [PubMed]
  6. W. Wagner, C. Li, J. Semmlow, and W. Warren, “Rapid phase-cycled two-dimensional optical spectroscopy in fluorescence and transmission mode,” Opt. Express13(10), 3697–3706 (2005). [CrossRef] [PubMed]
  7. S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett.31(6), 838–840 (2006). [CrossRef] [PubMed]
  8. S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A.104(36), 14197–14202 (2007). [CrossRef] [PubMed]
  9. E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express15(25), 16681–16689 (2007). [CrossRef] [PubMed]
  10. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express16(22), 17420–17428 (2008). [CrossRef] [PubMed]
  11. P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett.34(9), 1390–1392 (2009). [CrossRef] [PubMed]
  12. P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express18(11), 11015–11024 (2010). [CrossRef] [PubMed]
  13. M. Kullmann, S. Ruetzel, J. Buback, P. Nuernberger, and T. Brixner, “Reaction dynamics of a molecular switch unveiled by coherent two-dimensional electronic spectroscopy,” J. Am. Chem. Soc.133(33), 13074–13080 (2011). [CrossRef] [PubMed]
  14. K. L. M. Lewis and J. P. Ogilvie, “Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett.3(4), 503–510 (2012). [CrossRef]
  15. C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express17(21), 18788–18793 (2009). [CrossRef] [PubMed]
  16. C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012). [CrossRef] [PubMed]
  17. A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000). [CrossRef]
  18. M. A. Montgomery, E. M. Grumstrup, and N. H. Damrauer, “Fourier transform spectroscopies derived from amplitude or phase shaping of broadband laser pulses with applications to adaptive control,” J. Opt. Soc. Am. B27(12), 2518–2533 (2010). [CrossRef]
  19. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003). [CrossRef] [PubMed]
  20. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).
  21. S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A103(49), 10489–10505 (1999). [CrossRef]
  22. J. Vaughan, T. Feurer, K. Stone, and K. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express14(3), 1314–1328 (2006). [CrossRef] [PubMed]
  23. K. Blum, Density Matrix Theory and Applications, Physics of Atoms and Molecules, 2nd ed., (Plenum Press, 1996).
  24. R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier/Academic Press, 2008).
  25. A. M. Weiner, S. DeSilvestri, and E. P. Ippen, “Three-Pulse scattering for femtosecond dephasing studies - theory and experiment,” J. Opt. Soc. Am. B2(4), 654–662 (1985). [CrossRef]
  26. H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: Protein protection of excitonic coherence,” Science316(5830), 1462–1465 (2007). [CrossRef] [PubMed]
  27. L. Seidner, G. Stock, and W. Domcke, “Nonperturbative approach to femtosecond spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes,” J. Chem. Phys.103(10), 3998–4011 (1995). [CrossRef]
  28. B. Wolfseder, L. Seidner, G. Stock, and W. Domcke, “Femtosecond pump-probe spectroscopy of electron-transfer systems: a nonperturbative approach,” Chem. Phys.217(2-3), 275–287 (1997). [CrossRef]
  29. H. Wang and M. Thoss, “Nonperturbative simulation of pump–probe spectra for electron transfer reactions in the condensed phase,” Chem. Phys. Lett.389(1-3), 43–50 (2004). [CrossRef]
  30. T. S. Mančal, A. V. Pisliakov, and G. R. Fleming, “Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra,” J. Chem. Phys.124(23), 234504 (2006). [CrossRef] [PubMed]
  31. A. Albrecht, J. Hybl, S. Faeder, and D. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111(24), 10934–10956 (1999). [CrossRef]
  32. J. Hybl, Y. Christophe, and D. Jonas, “Peak shapes in femtosecond 2D correlation spectroscopy,” Chem. Phys.266(2-3), 295–309 (2001). [CrossRef]
  33. D. Jonas, (personal communication, August 10, 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited